版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆四川雙流棠湖中學數(shù)學高二上期末學業(yè)水平測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分又不必要條件2.下列函數(shù)的求導正確的是()A. B.C. D.3.已知橢圓的左、右焦點分別為,,點P是橢圓上一點且的最大值為,則橢圓離心率為()A. B.C. D.4.三棱錐A-BCD中,E,F(xiàn),H分別為邊CD,AD,BC的中點,BE,DH的交點為G,則的化簡結果為()A. B.C. D.5.4位同學報名參加四個課外活動小組,每位同學限報其中的一個小組,則不同的報名方法共有()A.24種 B.81種C.64種 D.256種6.由直線上的點向圓引切線,則切線長的最小值為()A. B.C.4 D.27.在中,已知角A,B,C所對邊為a,b,c,,,,則()A. B.C. D.18.已知是雙曲線的左焦點,圓與雙曲線在第一象限的交點為,若的中點在雙曲線的漸近線上,則此雙曲線的離心率是()A. B.2C. D.9.如圖1所示,拋物面天線是指由拋物面(拋物線繞其對稱軸旋轉形成的曲面)反射器和位于其焦點上的照射器(饋源,通常采用喇叭天線)組成的單反射面型天線,廣泛應用于微波和衛(wèi)星通訊等,具有結構簡單、方向性強、工作頻帶寬等特點.圖2是圖1的軸截面,,兩點關于拋物線的對稱軸對稱,是拋物線的焦點,是饋源的方向角,記為.焦點到頂點的距離與口徑的比為拋物面天線的焦徑比,它直接影響天線的效率與信噪比等.若饋源方向角滿足,則該拋物面天線的焦徑比為()A. B.C. D.210.拋物線的焦點坐標是()A. B.C. D.11.已知數(shù)列滿足,,數(shù)列的前n項和為,若,,成等差數(shù)列,則n=()A.6 B.8C.16 D.2212.將一枚骰子先后拋擲兩次,若先后出現(xiàn)的點數(shù)分別記為a,b,則直線到原點的距離不超過1的概率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若圓柱的高、底面半徑均為1,則其表面積為___________14.在銳角中,角A,B,C的對邊分別為a,b,c.若,,,則的面積為_________15.已知橢圓的右頂點為,直線與橢圓交于兩點,若,則橢圓的離心率為___________.16.直線與曲線有且僅有一個公共點.則b的取值范圍是__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓M經(jīng)過點F(2,0),且與直線x=-2相切.(1)求圓心M的軌跡C的方程;(2)過點(-1,0)的直線l與曲線C交于A,B兩點,若,求直線l的斜率k的取值范圍.18.(12分)請你設計一個包裝盒,如圖所示,是邊長為的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得四個點重合于圖中的點,正好形成一個長方體形狀的包裝盒,、在上是被切去的等腰直角三角形斜邊的兩個端點,設(1)求包裝盒的容積關于的函數(shù)表達式,并求出函數(shù)的定義域;(2)當為多少時,包裝盒的容積最大?最大容積是多少?19.(12分)已知圓(1)若一直線被圓C所截得的弦的中點為,求該直線的方程;(2)設直線與圓C交于A,B兩點,把的面積S表示為m的函數(shù),并求S的最大值20.(12分)已知拋物線C的方程是.(1)求C的焦點坐標和準線方程;(2)直線l過拋物線C的焦點且傾斜角為,與拋物線C的交點為A,B,求的長度.21.(12分)已知橢圓的離心率是,且過點.直線與橢圓相交于兩點.(Ⅰ)求橢圓的方程;(Ⅱ)求的面積的最大值;(Ⅲ)設直線,分別與軸交于點,.判斷,大小關系,并加以證明.22.(10分)如圖所示,是棱長為的正方體,是棱的中點,是棱的中點(1)求直線與平面所成角的正弦值;(2)求到平面的距離
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)充分條件和必要條件的定義判斷即可求解.【詳解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分條件,故選:B.2、B【解析】對各個選項進行導數(shù)運算驗證即可.【詳解】,故A錯誤;,故B正確;,故C錯誤;,故D錯誤.故選:B3、A【解析】根據(jù)橢圓的定義可得,從而得到,則,其中,再根據(jù)對勾函數(shù)的性質求出,即可得到方程,從求出橢圓的離心率;【詳解】解:依題意,所以,又,所以,因為在上單調遞減,所以當時函數(shù)取得最大值,即,即所以,即,所以,解得或(舍去)故選:A4、D【解析】依題意可得為的重心,由三角形重心的性質可知,由中位線定理可知,再利用向量的加法運算法則即可求出結果【詳解】解:依題意可得為的重心,,,分別為邊,和的中點,,,故選:D5、D【解析】利用分步乘法計數(shù)原理進行計算.【詳解】每位同學均有四種選擇,故不同的報名方法有種.故選:D6、D【解析】切點與圓心的連線垂直于切線,切線長轉化為直線上點與圓心連線和半徑的關系,利用點到直線的距離公式求出圓心與直線上點距離的最小值,結合勾股定理即可得出結果.【詳解】設為直線上任意一點,,切線長的最小值為:,故選:D.7、B【解析】利用正弦定理求解.【詳解】在中,由正弦定理得,解得,故選:B.8、A【解析】根據(jù)雙曲線的幾何性質和平面幾何性質,建立關于a,b,c的方程,從而可求得雙曲線的離心率得選項.【詳解】由題意可設右焦點為,因為,且圓:,所以點在以焦距為直徑的圓上,則,設的中點為點,則為的中位線,所以,則,又點在漸近線上,所以,且,則,,所以,所以,則在中,可得,,即,解得,所以,故選:A【點睛】方法點睛:(1)求雙曲線的離心率時,將提供的雙曲線的幾何關系轉化為關于雙曲線基本量的方程或不等式,利用和轉化為關于e的方程或不等式,通過解方程或不等式求得離心率的值或取值范圍(2)對于焦點三角形,要注意雙曲線定義的應用,運用整體代換的方法可以減少計算量9、B【解析】建立平面直角坐標系,利用題設條件得到得點坐標,代入拋物線方程化簡即可求解【詳解】建立如圖所示的平面直角坐標系,設拋物線的方程為()在中,則所以則所以,所以將代入拋物線方程中得所以或即或(舍)當時,故選:B10、C【解析】化為標準方程,利用焦點坐標公式求解.【詳解】拋物線的標準方程為,所以拋物線的焦點在軸上,且,所以,所以拋物線的焦點坐標為.故選:C11、D【解析】利用累加法求得列的通項公式,再利用裂項相消法求得數(shù)列的前n項和為,再根據(jù),,成等差數(shù)列,得,從而可得出答案.【詳解】解:因為,且,所以當時,,因為也滿足,所以.因為,所以.若,,成等差數(shù)列,則,即,得.故選:D.12、C【解析】先由條件得出a,b滿足,得出滿足的基本事件數(shù),再求出總的基本事件數(shù),從而可得答案.【詳解】直線到原點的距離不超過1,則所以當時,可以為5,6當時,可以為4,5,6當時,可以為4,5,6當時,可以為2,3,4,5,6當時,可以為1,2,3,4,5,6當時,可以為1,2,3,4,5,6滿足的共有25種結果.將一枚骰子先后拋擲兩次,若先后出現(xiàn)的點數(shù)分別記為a,b,共有種結果所以滿足條件的概率為故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)圓柱表面積公式求解即可.【詳解】根據(jù)題意得到圓柱的高,底面半徑,則表面積.故答案為:14、【解析】根據(jù)求出,由向量數(shù)量積得到,使用余弦定理得到方程組,求出,利用面積公式求出結果.【詳解】因為,所以,即,而因為是銳角三角形,所以,所以,所以,因為,所以,即,因為,所以,整理得:①,其中,即,因為,所以,即,解得:②,把②代入①得:,解得:,則的面積為.故答案為:15、【解析】求出右頂點坐標,然后推出的縱坐標,利用已知條件列出方程,求解橢圓的離心率即可【詳解】解:橢圓的右頂點為,直線與橢圓交于,兩點,若,可知,不妨設在第一象限,所以的縱坐標為:,可得:,即,可得,,所以故答案為:16、或.【解析】根據(jù)曲線方程得曲線的軌跡是個半圓,數(shù)形結合分析得兩種情況:(1)直線與半圓相切有一個交點;(2)直線與半圓相交于一個點,綜合兩種情況可得答案.【詳解】由曲線,可得,表示以原點為圓心,半徑為的右半圓,是傾斜角為的直線與曲線有且只有一個公共點有兩種情況:(1)直線與半圓相切,根據(jù),所以,結合圖像可得;(2)直線與半圓的上半部分相交于一個交點,由圖可知.故答案為:或.【點睛】方法點睛:處理直線與圓位置關系時,若兩方程已知或圓心到直線的距離易表達,則用幾何法;若方程中含有參數(shù),或圓心到直線的距離的表達較繁瑣,則用代數(shù)法;如果或有限制,需要數(shù)形結合進行分析.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)設圓心,軌跡兩點的距離公式列出方程,整理方程即可;(2)設直線l的方程和點A、B的坐標,直線方程聯(lián)立拋物線方程,消去x得出關于y的一元二次方程,結合根的判別式和韋達定理表示出弦,進而列出不等式,解之即可.【小問1詳解】設圓心,由題意知,,整理,得,即圓心M的軌跡C方程為:;【小問2詳解】由題意知,過點(-1,0)的直線l與拋物線C相交于點A、B,所以直線l的斜率存在且不為0,設直線,點,則,消去x,得,或,,同理可得,所以,即,由,得,解得,綜上,或,所以或,即直線l的斜率的取值范圍為.18、(1),定義域為;(2)當時,包裝盒的容積最大是.【解析】(1)設出包裝盒的高和底面邊長,利用長方體的表面積得到等量關系,再利用長方體的體積公式求出表達式,再利用實際意義得到函數(shù)的定義域;(2)求導,利用導函數(shù)的符號變化得到函數(shù)的極值,即最值.小問1詳解】解:設包裝盒的高為,底面邊長為,則,,所以=其定義域為;【小問2詳解】解:由(1)得:,,因為,所以當時,;當時,;所以當時,取得極大值,即當時,包裝盒的容積最大是19、(1)(2),最大值為.【解析】(1)利用垂徑定理求出斜率,即可求出直線的方程;(2)利用幾何法表示出弦長與d的關系,利用基本不等式求出的面積S的最大值【小問1詳解】圓化為標準方程為:.則.設所求的直線為m.由圓的幾何性質可知:,所以,所以所求的直線為:,即.【小問2詳解】設圓心C到直線l的距離為d,則,且,所以因為直線與圓C交于A,B兩點,所以,解得:且.而的面積:因為所以(其中時等號成立).所以S的最大值為.20、(1)焦點為,準線方程:(2)【解析】(1)拋物線的標準方程為,焦點在軸上,開口向右,,即可求出拋物線的焦點坐標和準線方程;(2)現(xiàn)根據(jù)題意給出直線的方程,代入拋物線,求出兩交點的橫坐標的和,然后利用焦半徑公式求解即可【小問1詳解】(1)拋物線的標準方程是,焦點在軸上,開口向右,,∴,∴焦點為,準線方程:.【小問2詳解】∵直線l過拋物線C的焦點且傾斜角為,,∴直線L的方程為,代入拋物線化簡得,設,則,所以故所求的弦長為1221、(1)(2)(3)見解析【解析】(1)由題意求得,所以橢圓的方程為(2)聯(lián)立直線與橢圓方程,由題意可得.三角形的高為.,面積表達式,當且僅當時,.即的面積的最大值是(3)結論為.利用題意有.所以試題解析:解:(Ⅰ)設橢圓的半焦距為因為橢圓的離心率是,所以,即由解得所以橢圓的方程為(Ⅱ)將代入,消去整理得令,解得設則,所以點到直線的距離為所以的面積,當且僅當時,所以的面積的最大值是(Ⅲ).證明如下:設直線,的斜率分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《海岸風光模板》課件
- 水準測量外業(yè)工作要點
- 贛南醫(yī)學院《生物化學與分子生物學》2023-2024學年第一學期期末試卷
- 勞動防護用品培訓課件
- 身體解剖培訓課件
- 2022年上海統(tǒng)計師(中級)《統(tǒng)計基礎理論及相關知識》考試題庫及答案
- 甘孜職業(yè)學院《園林工程實驗》2023-2024學年第一學期期末試卷
- 三年級數(shù)學上冊1時分秒單元概述和課時安排素材新人教版
- 三年級數(shù)學上冊第三單元測量第4課時千米的認識教案新人教版
- 小學生校園安全教育制度
- 2024年融媒體中心事業(yè)單位考試招考142人500題大全加解析答案
- 2024-2025學年 語文二年級上冊統(tǒng)編版期末測試卷(含答案)
- 期末測試題二(含答案)2024-2025學年譯林版七年級英語上冊
- 大創(chuàng)賽項目書
- 產(chǎn)品質量知識培訓課件
- 乳腺旋切手術
- 醫(yī)護禮儀課件教學課件
- 2024-2030年中國商品混凝土行業(yè)產(chǎn)量預測分析投資戰(zhàn)略規(guī)劃研究報告
- 2023年中國奧特萊斯行業(yè)白皮書
- 2024年江蘇省學業(yè)水平合格性考試全真模擬語文試題(解析版)
- 獨家投放充電寶協(xié)議書范文范本
評論
0/150
提交評論