版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省永春一中2025屆數(shù)學(xué)高二上期末統(tǒng)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知x,y是實(shí)數(shù),且,則的最大值是()A. B.C. D.2.函數(shù)y=的最大值為Ae-1 B.eC.e2 D.3.已知空間向量,且與垂直,則等于()A.-2 B.-1C.1 D.24.等差數(shù)列中,,,則()A.1 B.2C.3 D.45.函數(shù)f(x)=的圖象大致形狀是()A. B.C. D.6.已知圓C1:(x+3)2+y2=1和圓C2:(x-3)2+y2=9,動(dòng)圓M同時(shí)與圓C1及圓C2相外切,求動(dòng)圓圓心M的軌跡方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=17.拋物線的焦點(diǎn)為F,A,B是拋物線上兩點(diǎn),若,若AB的中點(diǎn)到準(zhǔn)線的距離為3,則AF的中點(diǎn)到準(zhǔn)線的距離為()A.1 B.2C.3 D.48.在正項(xiàng)等比數(shù)列中,和為方程的兩根,則等于()A.8 B.10C.16 D.329.設(shè)函數(shù)在R上可導(dǎo),其導(dǎo)函數(shù)為,且函數(shù)的圖像如題(8)圖所示,則下列結(jié)論中一定成立的是A.函數(shù)有極大值和極小值B.函數(shù)有極大值和極小值C.函數(shù)有極大值和極小值D.函數(shù)有極大值和極小值10.雙曲線的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線上,下列結(jié)論不正確的是()A.該雙曲線的離心率為B.該雙曲線的漸近線方程為C.點(diǎn)P到兩漸近線的距離的乘積為D.若PF1⊥PF2,則△PF1F2的面積為3211.已知呈線性相關(guān)的變量x與y的部分?jǐn)?shù)據(jù)如表所示:若其回歸直線方程是,則()x24568y34.5m7.59A.6.5 B.6C.6.1 D.712.已知直線和互相垂直,則實(shí)數(shù)的值為()A. B.C.或 D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在平行六面體中,底面是邊長(zhǎng)為1的正方形,若,且,則的長(zhǎng)為_________14.關(guān)于曲線,給出下列三個(gè)結(jié)論:①曲線關(guān)于原點(diǎn)對(duì)稱,但不關(guān)于軸、軸對(duì)稱;②曲線恰好經(jīng)過(guò)4個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));③曲線上任意一點(diǎn)到原點(diǎn)的距離都不大于.其中,正確結(jié)論的序號(hào)是________.15.命題“任意,”為真命題,則實(shí)數(shù)a的取值范圍是______.16.?dāng)€尖是古代中國(guó)建筑中屋頂?shù)囊环N結(jié)構(gòu)形式,依其平面有圓形攢尖、三角攢尖、四角攢尖、八角攢尖.如圖屬重檐四角攢尖,它的上層輪廓可近似看作一個(gè)正四棱錐,若此正四棱錐的側(cè)面積是底面積的2倍,則側(cè)面與底面的夾角為___________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,底面為直角梯形,底面分別為的中點(diǎn),(1)求證:平面平面;(2)求二面角的大小18.(12分)如圖,在三棱錐中,,,記二面角的平面角為(1)若,,求三棱錐的體積;(2)若M為BC的中點(diǎn),求直線AD與EM所成角的取值范圍19.(12分)已知等差數(shù)列的前項(xiàng)和為,且,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和20.(12分)如圖,在直三棱柱中,,,與交于點(diǎn),為的中點(diǎn),(1)求證:平面;(2)求證:平面平面21.(12分)在①,;②,;③,.這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中.問(wèn)題:已知數(shù)列的前n項(xiàng)和為,,___________.(1)求數(shù)列的通項(xiàng)公式(2)已知,求數(shù)列的前n項(xiàng)和.22.(10分)如圖1,在中,,,,分別是,邊上的中點(diǎn),將沿折起到的位置,使,如圖2(1)求點(diǎn)到平面距離;(2)在線段上是否存在一點(diǎn),使得平面與平面夾角的余弦值為.若存在,求出長(zhǎng);若不存在,請(qǐng)說(shuō)明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】將方程化為圓的標(biāo)準(zhǔn)方程,則的幾何意義是圓上一點(diǎn)與點(diǎn)連線的斜率,進(jìn)而根據(jù)直線與圓相切求得答案.【詳解】方程可化為,表示以為圓心,為半徑的圓,的幾何意義是圓上一點(diǎn)與點(diǎn)A連線的斜率,設(shè),即,當(dāng)此直線與圓相切時(shí),斜率最大或最小,當(dāng)切線位于切線AB時(shí)斜率最大.此時(shí),,,所以的最大值為.故選:D2、A【解析】,所以函數(shù)在上遞增,在上遞減,所以函數(shù)的最大值為時(shí),y==故選A點(diǎn)睛:研究函數(shù)最值主要根據(jù)導(dǎo)數(shù)研究函數(shù)的單調(diào)性,找到最值,分式求導(dǎo)公式要記熟3、B【解析】直接利用空間向量垂直的坐標(biāo)運(yùn)算即可解決.【詳解】∵∴∴,解得,故選:B.4、B【解析】根據(jù)給定條件利用等差數(shù)列性質(zhì)直接計(jì)算作答.【詳解】在等差數(shù)列中,因,,而,于是得,解得,所以.故選:B5、B【解析】利用函數(shù)的奇偶性排除選項(xiàng)A,C,然后利用特殊值判斷即可【詳解】解:由題得函數(shù)的定義域?yàn)?,關(guān)于原點(diǎn)對(duì)稱.所以函數(shù)是奇函數(shù),排除選項(xiàng)A,C.當(dāng)時(shí),,排除選項(xiàng)D,故選:B6、A【解析】根據(jù)雙曲線定義求解【詳解】,則根據(jù)雙曲線定義知的軌跡為的左半支故選:A第II卷(非選擇題7、C【解析】結(jié)合拋物線的定義求得,由此求得線段的中點(diǎn)到準(zhǔn)線的距離【詳解】拋物線方程為,則,由于中點(diǎn)到準(zhǔn)線的距離為3,結(jié)合拋物線的定義可知,即,所以線段的中點(diǎn)到準(zhǔn)線的距離為.故選:C8、C【解析】根據(jù)和為方程兩根,得到,然后再利用等比數(shù)列的性質(zhì)求解.【詳解】因?yàn)楹蜑榉匠痰膬筛?,所以,又因?yàn)閿?shù)列是等比數(shù)列,所以,故選:C9、D【解析】則函數(shù)增;則函數(shù)減;則函數(shù)減;則函數(shù)增;選D.【考點(diǎn)定位】判斷函數(shù)的單調(diào)性一般利用導(dǎo)函數(shù)的符號(hào),當(dāng)導(dǎo)函數(shù)大于0則函數(shù)遞增,當(dāng)導(dǎo)函數(shù)小于0則函數(shù)遞減10、D【解析】根據(jù)雙曲線的離心率、漸近線、點(diǎn)到直線距離公式、三角形的面積等知識(shí)來(lái)確定正確答案.【詳解】由題意可知,a=3,b=4,c=5,,故離心率e,故A正確;由雙曲線的性質(zhì)可知,雙曲線線的漸近線方程為y=±x,故B正確;設(shè)P(x,y),則P到兩漸近線的距離之積為,故C正確;若PF1⊥PF2,則△PF1F2是直角三角形,由勾股定理得,由雙曲線的定義可得|PF1|﹣|PF2|=2a=6(不妨取P在第一象限),∴2|PF1||PF2|=100﹣2|PF1||PF2|,解得|PF1||PF2|=32,可得,故D錯(cuò)誤.故選:D11、A【解析】根據(jù)回歸直線過(guò)樣本點(diǎn)的中心進(jìn)行求解即可.【詳解】由題意可得,,則,解得故選:A.12、B【解析】由兩直線垂直可得出關(guān)于實(shí)數(shù)的等式,求解即可.【詳解】由已知可得,解得.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】因?yàn)?,所以,即,?4、①③【解析】設(shè)為曲線上任意一點(diǎn),判斷、、是否滿足曲線方程即可判斷①;求出曲線過(guò)的整點(diǎn)即可判斷②;由條件利用即可得,即可判斷③;即可得解.【詳解】設(shè)為曲線上任意一點(diǎn),則,設(shè)點(diǎn)關(guān)于原點(diǎn)、軸、軸的對(duì)稱點(diǎn)分別為、、,因?yàn)椋?;;所以點(diǎn)在曲線上,點(diǎn)、點(diǎn)不在曲線上,所以曲線關(guān)于原點(diǎn)對(duì)稱,但不關(guān)于軸、軸對(duì)稱,故①正確;當(dāng)時(shí),;當(dāng),.此外,當(dāng)時(shí),;當(dāng)時(shí),.故曲線過(guò)整點(diǎn),,,,,,故②錯(cuò)誤;又,所以恒成立,由可得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,所以曲線上任一點(diǎn)到原點(diǎn)的距離,故③正確.故答案為:①③.【點(diǎn)睛】本題考查了與曲線方程有關(guān)的命題真假判斷,屬于中檔題.15、【解析】分離常數(shù),將問(wèn)題轉(zhuǎn)化求函數(shù)最值問(wèn)題.【詳解】任意,恒成立恒成立,故只需,記,,易知,所以.故答案為:16、【解析】設(shè)此四棱錐P-ABCD底面邊長(zhǎng)為,斜高為,連結(jié)AC、BD交于點(diǎn)O,連結(jié)OP.則以O(shè)為原點(diǎn),為x、y、z軸正半軸建立空間直角坐標(biāo)系,用向量法求出側(cè)面與底面夾角.【詳解】設(shè)此四棱錐P-ABCD底面邊長(zhǎng)為,斜高為,連結(jié)AC、BD交于點(diǎn)O,連結(jié)OP.則,,以O(shè)為原點(diǎn),為x、y、z軸正半軸建立空間直角坐標(biāo)系則,,設(shè)平面的法向量為,則,令,則,顯然平面的法向量為所以,所以側(cè)面與底面的夾角為故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】(1)依題意可得平行四邊形是矩形,即可得到,再由及面面垂直的性質(zhì)定理得到平面,從而得到,即可得到平面,從而得證;(2)建立空間直角坐標(biāo)系,利用空間向量法求出二面角的余弦值,即可得解;【小問(wèn)1詳解】證明:因?yàn)闉榈闹悬c(diǎn),,所以,又,所以四邊形為平行四邊形,因?yàn)?,所以平行四邊形是矩形,所以,因?yàn)?,所以,又因?yàn)槠矫嫫矫妫矫嫫矫婷?,所以平面,因?yàn)槊?,所以,又因?yàn)?,平面,所以平面,因?yàn)槠矫?,所以平面平面;【小?wèn)2詳解】解:由(1)可得:兩兩垂直,如圖,分別以所在的直線為軸建立空間直角坐標(biāo)系,則則,設(shè)平面的一個(gè)法向量,由則,令,則,所以,設(shè)平面的一個(gè)法向量,所以,根據(jù)圖像可知二面角為銳二面角,所以二面角的大小為;18、(1)(2)【解析】(1)作出輔助線,找到二面角的平面角,利用余弦定理求出,求出底面積和高,進(jìn)而求出三棱錐的體積;(2)利用空間基底表達(dá)出,結(jié)合第一問(wèn)結(jié)論求出,從而求出答案.【小問(wèn)1詳解】取AC的中點(diǎn)F,連接FD,F(xiàn)E,由BC=2,則,故DF⊥AC,EF⊥AC,故∠DFE即為二面角的平面角,即,連接DE,作DH⊥FE,因?yàn)?,所以平面DEF,因?yàn)镈H平面DEF,所以AC⊥DH,因?yàn)?,所以DH⊥平面ABC,因?yàn)?,由勾股定理得:,,又,由勾股定理逆定理可知,AE⊥CE,且∠BAC=,,在△ABC中,由余弦定理得:,解得:或(舍去),則,因?yàn)?,,所以△DEF為等邊三角形,則,故三棱錐的體積;【小問(wèn)2詳解】設(shè),則,,由(1)知:,,取為空間中的一組基底,則,由第一問(wèn)可知:,則其中,且,,故,由第一問(wèn)可知,又是的中點(diǎn),所以,所以,因?yàn)槿忮F中,所以,所以,故直線AD與EM所成角范圍為.【點(diǎn)睛】針對(duì)于立體幾何中角度范圍的題目,可以建立空間直角坐標(biāo)系來(lái)進(jìn)行求解,若不容易建立坐標(biāo)系時(shí),也可以通過(guò)基底表達(dá)出各個(gè)向量,進(jìn)而求出答案.19、(1)(2)【解析】(1)設(shè)等差數(shù)列公差為d,首項(xiàng)為a1,根據(jù)已知條件列出方程組求解a1,d,代入通項(xiàng)公式即可得答案;(2)根據(jù)等差、等比數(shù)列的前n項(xiàng)和公式,利用分組求和法即可求解【小問(wèn)1詳解】解:設(shè)等差數(shù)列公差為d,首項(xiàng)為a1,由題意,有,解得,所以;【小問(wèn)2詳解】解:,所以20、(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】(1)根據(jù)直棱柱的性質(zhì)、平行四邊形的性質(zhì),結(jié)合三角形中位線定理、線面平行的判定定理進(jìn)行證明即可;(2)根據(jù)直棱柱的性質(zhì)、菱形的判定定理和性質(zhì),結(jié)合線面垂直的判定定理、面面垂直的判定定理進(jìn)行證明即可.【小問(wèn)1詳解】在直三棱柱中,,且四邊形平行四邊形,又,則為的中點(diǎn),又為的中點(diǎn),故,即:,且平面,平面,所以平面;【小問(wèn)2詳解】在直三棱柱中,平面,平面,則,且,,平面,故平面,因?yàn)槠矫?,所以,又在平行四邊形中,,則四邊形菱形,所以,且,平面,故平面,因?yàn)槠矫妫云矫嫫矫?21、(1)(2)【解析】(1)選①,利用化已知等式為,得是等差數(shù)列,公差,求出其通項(xiàng)公式后,再由求得通項(xiàng)公式,注意;選②,由可變形已知條件得是等差數(shù)列,從而求得通項(xiàng)公式;選③,已知式兩邊同除以,得出,以下同選①;(2)由錯(cuò)位相減法求和【小問(wèn)1詳解】選①,由得,,所以,即,所以是等差數(shù)列,公差,又,,,所以,,時(shí),也適合所以;選②,由得,所以等差數(shù)列,公差為,又,所以;選③,由得,以下同選①,【小問(wèn)2詳解】由(1),,,兩式相減得,所以22、(1)(2)存在,【解析】(1)根據(jù)題意分別由已知條件計(jì)算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標(biāo)系,設(shè),然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結(jié)果【小問(wèn)1詳解】在中,,因?yàn)椋謩e是,邊上的中
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 感恩教育活動(dòng)總結(jié)(15篇)
- 幼兒書籍的讀書心得
- 快遞公司實(shí)習(xí)心得
- 第四單元+提高創(chuàng)新思維能力+練習(xí)(B卷) 高中政治統(tǒng)編版選擇性必修三邏輯與思維
- 地球的自轉(zhuǎn)+訓(xùn)練題 高二地理湘教版(2019)選擇性必修1
- 針灸聯(lián)合補(bǔ)陽(yáng)還五湯加減治療頸腰椎病的臨床價(jià)值
- 心理拓展訓(xùn)練心得體會(huì)(范文7篇)
- 初級(jí)會(huì)計(jì)實(shí)務(wù)-初級(jí)會(huì)計(jì)《初級(jí)會(huì)計(jì)實(shí)務(wù)》模擬試卷378
- 星載AIS系統(tǒng)解交織關(guān)鍵技術(shù)研究
- 2025版汽車修理廠租賃及維修服務(wù)一體化合同3篇
- 2023年四川省公務(wù)員錄用考試《行測(cè)》真題卷及答案解析
- 機(jī)電一體化系統(tǒng)設(shè)計(jì)-第5章-特性分析
- 2025年高考物理復(fù)習(xí)壓軸題:電磁感應(yīng)綜合問(wèn)題(原卷版)
- 雨棚鋼結(jié)構(gòu)施工組織設(shè)計(jì)正式版
- 2024尼爾森IQ中國(guó)本土快消企業(yè)調(diào)研報(bào)告
- 2024年印度辣椒行業(yè)狀況及未來(lái)發(fā)展趨勢(shì)報(bào)告
- 鑄鋁焊接工藝
- 《社區(qū)康復(fù)》課件-第六章 骨關(guān)節(jié)疾病、損傷患者的社區(qū)康復(fù)實(shí)踐
- 2024年湖南省公務(wù)員考試行政職業(yè)能力測(cè)驗(yàn)真題
- 攀巖運(yùn)動(dòng)之繩結(jié)技巧課程
- 防打架毆斗安全教育課件
評(píng)論
0/150
提交評(píng)論