版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆河北省淶水縣波峰中學數(shù)學高二上期末調研試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.曲線y=x3+11在點P(1,12)處的切線與y軸交點的縱坐標是()A.﹣9 B.﹣3C.9 D.152.直線的傾斜角為()A.0 B.C. D.3.點F是拋物線的焦點,點,P為拋物線上一點,P不在直線AF上,則△PAF的周長的最小值是()A.4 B.6C. D.4.某四面體的三視圖如圖所示,該四面體的體積為()A. B.C. D.5.在正四面體中,點為所在平面上動點,若與所成角為定值,則動點的軌跡是()A.圓 B.橢圓C.雙曲線 D.拋物線6.“”是“函數(shù)在上有極值”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知動直線的傾斜角的取值范圍是,則實數(shù)m的取值范圍是()A. B.C. D.8.設函數(shù)若函數(shù)有兩個零點,則實數(shù)m的取值范圍是()A. B.C. D.9.已知數(shù)列{}滿足,則()A. B.C. D.10.已知拋物線,,點在拋物線上,記點到直線的距離為,則的最小值是()A.5 B.6C.7 D.811.若數(shù)列1,a,b,c,9是等比數(shù)列,則實數(shù)b的值為()A.5 B.C.3 D.3或12.命題:“,”的否定是()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.隨機變量X的取值為0,1,2,若,,則_________14.用一個平面去截半徑為5cm的球,截面面積是則球心到截面的距離為_______15.已知點,,其中,若線段的中點坐標為,則直線的方程為________16.經(jīng)過兩點的雙曲線的標準方程是________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面直角標系中,已知n個圓與x軸和線均相切,且任意相鄰的兩個圓外切,其中圓.(1)求數(shù)列通項公式;(2)記n個圓的面積之和為S,求證:.18.(12分)在①,②,③這三個條件中任選一個補充在下面問題中,并解答下列題目設首項為2的數(shù)列的前n項和為,前n項積為,且______(1)求數(shù)列的通項公式;(2)若數(shù)列的前n項和為,令,求數(shù)列的前n項和19.(12分)在①;②;③;這三個條件中任選一個,補充在下面的問題中,然后解答補充完整的題.注:若選擇多個條件分別解答,則按第一個解答計分.已知,且(只需填序號).(1)求的值;(2)求展開式中的奇數(shù)次冪的項的系數(shù)之和20.(12分)在平面直角坐標系中,動點到直線的距離與到點的距離之差為.(1)求動點的軌跡的方程;(2)過點的直線與交于、兩點,若的面積為,求直線的方程.21.(12分)已知等差數(shù)列的前項和為,數(shù)列是等比數(shù)列,,,,.(1)求數(shù)列和的通項公式;(2)若,設數(shù)列的前項和為,求.22.(10分)已知復數(shù),是實數(shù).(1)求復數(shù)z;(2)若復數(shù)在復平面內所表示的點在第二象限,求實數(shù)m的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】y′=3x2,則y′|x=1=3,所以曲線在P點處的切線方程為y-12=3(x-1)即y=3x+9,它在y軸上的截距為9.2、D【解析】根據(jù)斜率與傾斜角的關系求解即可.【詳解】由題的斜率,故傾斜角的正切值為,又,故.故選:D.3、C【解析】由拋物線的定義轉化后求距離最值【詳解】拋物線的焦點,準線為過點作準線于點,故△PAF的周長為,,可知當三點共線時周長最小,為故選:C4、A【解析】可由三視圖還原原幾何體,然后根據(jù)題意的邊角關系,完成體積的求解.【詳解】由三視圖還原原幾何體如圖:其中平面,,則該四面體的體積為.故選:A.5、B【解析】把條件轉化為與圓錐的軸重合,面與圓錐的相交軌跡即為點的軌跡后即可求解.【詳解】以平面截圓錐面,平面位置不同,生成的相交軌跡可以為拋物線、雙曲線、橢圓、圓.令與圓錐的軸線重合,如圖所示,則圓錐母線與所成角為定值,所以面與圓錐的相交軌跡即為點的軌跡.根據(jù)題意,不可能垂直于平面即軌跡不可能為圓.面不可能與圓錐軸線平行,即軌跡不可能是雙曲線.可進一步計算與平面所成角為,即時,軌跡為拋物線,時,軌跡為橢圓,,所以軌跡為橢圓.故選:B.【點睛】本題考查了平面截圓錐面所得軌跡問題,考查了轉化化歸思想,屬于難題.6、B【解析】對求導,取得函數(shù)在上有極值的等價條件,再根據(jù)充分條件和必要條件的定義進行判斷即可【詳解】解:,則,令,可得,當時,,當時,,即在上單調遞減,在上單調遞增,所以,函數(shù)在處取得極小值,若函數(shù)在上有極值,則,,因為,但是由推不出,因此是函數(shù)在上有極值的必要不充分條件故選:B7、B【解析】根據(jù)傾斜角與斜率的關系可得,即可求m的范圍.【詳解】由題設知:直線斜率范圍為,即,可得.故選:B.8、D【解析】有兩個零點等價于與的圖象有兩個交點,利用導數(shù)分析函數(shù)的單調性與最值,畫出函數(shù)圖象,數(shù)形結合可得結果.【詳解】解:設,則,所以在上遞減,在上遞增,,且時,,有兩個零點等價于與的圖象有兩個交點,畫出的圖象,如下圖所示,由圖可得,時,與的圖象有兩個交點,此時,函數(shù)有兩個零點,實數(shù)m的取值范圍是,故選:D.【點睛】方法點睛:本題主要考查分段函數(shù)的性質、利用導數(shù)研究函數(shù)的單調性、函數(shù)的零點,以及數(shù)形結合思想的應用,屬于難題.數(shù)形結合是根據(jù)數(shù)量與圖形之間的對應關系,通過數(shù)與形的相互轉化來解決數(shù)學問題的一種重要思想方法,函數(shù)圖象是函數(shù)的一種表達形式,它形象地揭示了函數(shù)的性質,為研究函數(shù)的數(shù)量關系提供了“形”的直觀性.歸納起來,圖象的應用常見的命題探究角度有:1、確定方程根的個數(shù);2、求參數(shù)的取值范圍;3、求不等式的解集;4、研究函數(shù)性質9、B【解析】先將通項公式化簡然后用裂項相消法求解即可.【詳解】因為,.故選:B10、D【解析】先求出拋物線的焦點和準線,利用拋物線的定義將轉化為的距離,即可求解.【詳解】由已知得拋物線的焦點為,準線方程為,設點到準線的距離為,則,則由拋物線的定義可知∵,當點、、三點共線時等號成立,∴,故選:.11、C【解析】根據(jù)等比數(shù)列的定義,利用等比數(shù)列的通項公式求解【詳解】解:設該等比數(shù)列公比為q,∵數(shù)列1,a,b,c,9是等比數(shù)列,∴,,∴,故,解得,∴故選:C12、D【解析】利用全稱量詞命題的否定可得出結論.【詳解】由全稱量詞命題的否定可知,命題“,”的否定是“,”.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##0.4【解析】設出概率,利用期望求出相應的概率,進而利用求方差公式進行求解.【詳解】設,則,從而,解得:,所以故答案為:14、4cm【解析】根據(jù)圓面積公式算出截面圓的半徑,利用球的截面圓性質與勾股定理算出球心到截面的距離【詳解】解:設截面圓的半徑為r,截面的面積是,,可得又球的半徑為5cm,根據(jù)球的截面圓性質,可得截面到球心的距離為故答案為:4cm【點睛】本題主要考查了球的截面圓性質、勾股定理等知識,考查了空間想象能力,屬于基礎題15、【解析】根據(jù)中點坐標公式求出,再根據(jù)直線的兩點式方程即可得出答案.【詳解】解:由,,得線段的中點坐標為,所以,解得,所以直線的方程為,即.故答案為:.16、【解析】設雙曲線的標準方程將點坐標代入求參數(shù),即可確定標準方程.【詳解】令,則,可得,令,則,無解.故雙曲線的標準方程是.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).(2)證明見解析.【解析】(1)由已知得,設圓分別切軸于點,過點作,垂足為.在從而有得,由等比數(shù)列的定義得數(shù)列是以為首項,為公比的等比數(shù)列.由此求得答案;(2)由(1)得再由圓的面積公式和等比數(shù)列求和公式計算可得證.【小問1詳解】解:直線的傾斜角為則圓心在直線上,,設圓分別切軸于點,過點作,垂足為.在中,所以即化簡得,變形得,所以是以為首項,為公比的等比數(shù)列.,.【小問2詳解】解:由(1)得所以,所以.18、(1);(2).【解析】(1)選擇不同的條件,再通過構造數(shù)列以及累乘法即可求得對應情況下的通項公式;(2)根據(jù)(1)中所求,求得,再利用錯位相減法求其前項和即可.【小問1詳解】選①:∵,即,∴.即,∴數(shù)列是常數(shù)列,∴,故;選②:∵,∴時,,則,即∴,∴;當時,也滿足,∴;選③:得,所以數(shù)列是等差數(shù)列,首項為2,公差為1則,∴.【小問2詳解】由(1)知當時,,∴又∵時,,符合上式,∴∴∴而相減得∴.19、(1)選①②③,答案均為;(2)66【解析】(1)選①時,利用二項式定理求得的通項公式為,從而得到,求出n的值;選②時,利用二項式系數(shù)和的公式求出,解出n的值;選③時,利用賦值法求解,,從而求出n的值;(2)在第一問求出的的前提下進行賦值法求解.【小問1詳解】選①,其中,而的通項公式為,當時,,所以,解得:;選②,由于,所以,解得:;選③,令中得:,再令得:,解得:;【小問2詳解】由(1)知:n=7,所以,令得:,令得:,兩式相減得:,所以,故展開式中的奇數(shù)次冪的項的系數(shù)和為66.20、(1);(2)或.【解析】(1)本題首先可以設動點,然后根據(jù)題意得出,通過化簡即可得出結果;(2)本題首先可排除直線斜率不存在時情況,然后設直線方程為,通過聯(lián)立方程并化簡得出,則,,再然后根據(jù)得出,最后根據(jù)的面積為即可得出結果.【詳解】(1)設動點,因為動點到直線的距離與到點的距離之差為,所以,化簡可得,故軌跡方程為.(2)當直線斜率不存在時,其方程為,此時,與只有一個交點,不符合題意,當直線斜率存在時,設其方程為,聯(lián)立方程,化簡得,,令、,則,,因為,所以,因為的面積為,所以,解得或,故直線方程為:或.【點睛】本題考查動點的軌跡方程的求法以及拋物線與直線相交的相關問題的求解,能否根據(jù)題意列出等式是求動點的軌跡方程的關鍵,考查韋達定理的應用,在計算時要注意斜率為這種情況,考查計算能力,考查轉化與化歸思想,是中檔題.21、(1),;(2).【解析】(1)設等差數(shù)列的公差為,等比數(shù)列的公比為,根據(jù)題意列出表達式,解出公比和公差,再根據(jù)等差數(shù)等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 食品安全追溯消費者信任反饋建立
- 專業(yè)基礎-房地產(chǎn)經(jīng)紀人《專業(yè)基礎》真題匯編3
- 農場半年度工作匯報
- 統(tǒng)編版五年級語文上冊寒假作業(yè)(十三)有答案
- 二零二五版共有產(chǎn)權房轉讓協(xié)議書3篇
- 二零二五年智能大棚土地承包合作協(xié)議范本3篇
- 宿州航空職業(yè)學院《英語專業(yè)前沿課程》2023-2024學年第一學期期末試卷
- 二零二五版公共安全防范承包合同3篇
- 二零二五年食品包裝設計及委托加工合同
- 蘇教版初一英語試卷單選題100道及答案
- 春季餐飲營銷策劃
- 企業(yè)會計機構的職責(2篇)
- 《疥瘡的防治及治療》課件
- Unit4 What can you do Part B read and write (說課稿)-2024-2025學年人教PEP版英語五年級上冊
- 2025年MEMS傳感器行業(yè)深度分析報告
- 《線控底盤技術》2024年課程標準(含課程思政設計)
- 學校對口幫扶計劃
- 倉庫倉儲安全管理培訓課件模板
- 風力發(fā)電場運行維護手冊
- 河道旅游開發(fā)合同
- 情人合同范例
評論
0/150
提交評論