2025屆安徽省蕪湖市名校數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2025屆安徽省蕪湖市名校數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2025屆安徽省蕪湖市名校數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2025屆安徽省蕪湖市名校數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2025屆安徽省蕪湖市名校數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆安徽省蕪湖市名校數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在四面體OABC中,,,,點(diǎn)在線段上,且,為的中點(diǎn),則等于()A. B.C. D.2.已知橢圓:的左、右焦點(diǎn)分別為,,下頂點(diǎn)為,直線與橢圓的另一個交點(diǎn)為,若為等腰三角形,則橢圓的離心率為()A. B.C. D.3.設(shè)命題,,則為().A., B.,C., D.,4.已知三棱錐,點(diǎn)分別為的中點(diǎn),且,用表示,則等于()A. B.C. D.5.某種疾病的患病率為0.5%,通過驗血診斷該病的誤診率為2%,即非患者中有2%的人驗血結(jié)果為陽性,患者中有2%的人驗血結(jié)果為陰性,隨機(jī)抽取一人進(jìn)行驗血,則其驗血結(jié)果為陽性的概率為()A.0.0689 B.0.049C.0.0248 D.0.026.已知數(shù)列是等比數(shù)列,,是函數(shù)的兩個不同零點(diǎn),則()A.16 B.C.14 D.7.已知甲、乙、丙三名同學(xué)同時獨(dú)立地解答一道導(dǎo)數(shù)試題,每人均有的概率解答正確,且三個人解答正確與否相互獨(dú)立,在三人中至少有兩人解答正確的條件下,甲解答不正確的概率A. B.C. D.8.已知橢圓的離心率為.雙曲線的漸近線與橢圓有四個交點(diǎn),以這四個焦點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓的方程為A. B.C. D.9.若直線與圓相切,則()A. B.或2C. D.或10.某海關(guān)緝私艇在執(zhí)行巡邏任務(wù)時,發(fā)現(xiàn)其所在位置正西方向20nmile處有一走私船只,正以30nmile/h的速度向北偏東30°的方向逃竄,若緝私艇突然發(fā)生機(jī)械故障,20min后才以的速度開始追趕,則在走私船只不改變航向和速度的情況下,緝私艇追上走私船只的最短時間為()A.1h B.C. D.11.若,則()A. B.C. D.12.若實數(shù)滿足約束條件,則最小值為()A.-2 B.-1C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)數(shù)列的前n項和為,若,且是等差數(shù)列.則的值為__________14.過點(diǎn)作圓的兩條切線,切點(diǎn)為A,B,則直線的一般式方程為___________.15.已知空間向量,,則向量在向量上的投影向量的坐標(biāo)是__________16.設(shè)Sn是等差數(shù)列{an}的前n項和,若數(shù)列{an}滿足an+Sn=An2+Bn+C且A>0,則+B-C的最小值為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)球形物體天然萌,某食品廠沿襲老字號傳統(tǒng),獨(dú)家制造并使用球形玻璃瓶用于售賣酸梅湯,其中瓶子的制造成本c(分)與瓶子的半徑r(cm)的平方成正比,且當(dāng)cm時,制造成本c為3.2π分,已知每出售1mL的酸梅湯,可獲得0.2分,且制作的瓶子的最大半徑為6cm(1)寫出每瓶酸梅湯的利潤y與r的關(guān)系式(提示:);(2)瓶子半徑多大時,每瓶酸梅湯的利潤最大,最大為多少?(結(jié)果用含π的式子表示)18.(12分)如圖,在三棱錐中,側(cè)面PAB是邊長為4的正三角形且與底面ABC垂直,點(diǎn)D,E,F(xiàn),H分別是棱PA,AB,BC,PC的中點(diǎn)(1)若點(diǎn)G在棱BC上,且BG=3GC,求證:平面∥平面DHG;(2)若AC=2,,求二面角的余弦值19.(12分)已知函數(shù)(其中a常數(shù))(1)求的單調(diào)遞增區(qū)間;(2)若,時,的最小值為4,求a的值20.(12分)已知橢圓C:經(jīng)過點(diǎn),且離心率為(1)求橢圓C的方程;(2)是否存在⊙O:,使得⊙O的任意切線l與橢圓交于A,B兩點(diǎn),都有.若存在,求出r的值,并求此時△AOB的面積S的取值范圍;若不存在,請說明理由21.(12分)已知數(shù)列通項公式為:,其中.記為數(shù)列的前項和(1)求,;(2)數(shù)列的通項公式為,求的前項和22.(10分)已知等差數(shù)列中,,,等比數(shù)列中,,(1)求數(shù)列的通項公式;(2)記,求的最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用空間向量的加法與減法可得出關(guān)于、、的表達(dá)式.【詳解】.故選:D.2、B【解析】由橢圓定義可得各邊長,利用三角形相似,可得點(diǎn)坐標(biāo),再根據(jù)點(diǎn)在橢圓上,可得離心率.【詳解】如圖所示:因為為等腰三角形,且,又,所以,所以,過點(diǎn)作軸,垂足為,則,由,,得,因為點(diǎn)在橢圓上,所以,所以,即離心率,故選:B.3、B【解析】根據(jù)全稱命題和特稱命題互為否定,即可得到結(jié)果.【詳解】因為命題,,所以為,.故選:B.4、D【解析】連接,利用,化簡即可得到答案.【詳解】連接,如下圖.故選:D.5、C【解析】根據(jù)全概率公式即可求出【詳解】隨機(jī)抽取一人進(jìn)行驗血,則其驗血結(jié)果為陽性的概率為0.0248故選:C6、B【解析】由題意得到,根據(jù)等比數(shù)列的性質(zhì)得到,化簡,即可求解.【詳解】由,是函數(shù)的兩個不同零點(diǎn),可得,根據(jù)等比數(shù)列的性質(zhì),可得則.故選:B.7、C【解析】記“三人中至少有兩人解答正確”為事件;“甲解答不正確”為事件,利用二項分布的知識計算出,再計算出,結(jié)合條件概率公式求得結(jié)果.【詳解】記“三人中至少有兩人解答正確”為事件;“甲解答不正確”為事件則;本題正確選項:【點(diǎn)睛】本題考查條件概率的求解問題,涉及到利用二項分布公式求解概率的問題.8、D【解析】由題意,雙曲線的漸近線方程為,∵以這四個交點(diǎn)為頂點(diǎn)的四邊形為正方形,其面積為16,故邊長為4,∴(2,2)在橢圓C:上,∴,∵,∴,∴,∴∴橢圓方程為:.故選D.考點(diǎn):橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì);雙曲線的幾何性質(zhì).9、D【解析】根據(jù)圓心到直線的距離等于半徑列方程即可求解.【詳解】由圓可得圓心,半徑,因為直線與圓相切,所以圓心到直線的距離,整理可得:,所以或,故選:D.10、A【解析】設(shè)小時后,相遇地點(diǎn)為,在三角形中根據(jù)題目條件得出,再在三角形中,由勾股定理即可求出.【詳解】以緝私艇為原點(diǎn),建立如下圖所示的直角坐標(biāo)系.圖中走私船所在位置為,設(shè)緝私艇追上走私船的最短時間為,相遇地點(diǎn)為.則,走私船以的速度向北偏東30°的方向逃竄,60°.因為20min后緝私艇才以的速度開始追趕走私船,所以20min走私船行走了,到達(dá).在三角形中,由余弦定理知:,則,所以.在三角形中,,,有:,化簡得:,則.緝私艇追上走私船只的最短時間為1h.故選:A.點(diǎn)睛】11、D【解析】設(shè),計算出、的值,利用平方差公式可求得結(jié)果.【詳解】設(shè)由已知可得,,因此,.故選:D.12、B【解析】由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案【詳解】由約束條件作出可行域如圖,聯(lián)立,解得,由,得,由圖可知,當(dāng)直線過時,直線在軸上的截距最小,有最小值為故選:B二、填空題:本題共4小題,每小題5分,共20分。13、52【解析】根據(jù)給定條件求出,再求出數(shù)列的通項即可計算作答.【詳解】依題意,因是等差數(shù)列,則其公差,于是得,,當(dāng)時,,而滿足上式,因此,,所以.故答案為:5214、【解析】已知圓的圓心,點(diǎn)在以為直徑的圓上,兩圓相減就是直線的方程.【詳解】,圓心,點(diǎn)在以為直徑的圓上,,所以圓心是,以為直徑的圓的圓的方程是,直線是兩圓相交的公共弦所在直線,所以兩圓相減就是直線的方程,,所以直線的一般式方程為.故答案為:【點(diǎn)睛】結(jié)論點(diǎn)睛:過圓外一點(diǎn)引圓的切線,那么以圓心和圓外一點(diǎn)連線段為直徑的圓與已知圓相減,就是切點(diǎn)所在直線方程,或是兩圓相交,兩圓相減,就是公共弦所在直線方程.15、【解析】根據(jù)投影向量概念求解即可.【詳解】因為空間向量,,所以,,所以向量在向量上投影向量為:,故答案為:.16、2【解析】因為{an}為等差數(shù)列,設(shè)公差為d,由an+Sn=An2+Bn+C,得a1+(n-1)d+na1+n(n-1)d=an+Sn=An2+Bn+C,即(d-A)n2+(a1+-B)n+(a1-d-C)=0對任意正整數(shù)n都成立所以(d-A)=0,a1+d-B=0,a1-d-C=0,所以A=d,B=a1+d,C=a1-d,所以3A-B+C=0.+B-C=+3A≥2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)當(dāng)時,每瓶酸梅湯的利潤最大,最大利潤為28.8π【解析】(1)直接由條件寫出關(guān)系式即可;(2)直接求導(dǎo)確定單調(diào)性后,求出最大值即可.【小問1詳解】設(shè)瓶子的制造成本c與瓶子的半徑r的平方成正比的比例系數(shù)等于k,則瓶子的制造成本,由題意,當(dāng)時,∴,即瓶子的制造成本∴每瓶酸梅湯的利潤是,∴每瓶酸梅湯的利潤關(guān)于r的函數(shù)關(guān)系式為:,【小問2詳解】由(1)知,則,令,則,當(dāng)時,;當(dāng)時,∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,∴當(dāng)時,每瓶酸梅湯的利潤最大,最大利潤為28.8π.18、(1)證明見解析;(2).【解析】(1)由中位線的性質(zhì)可得、、,再由線面平行的判定可證平面PEF、平面PEF,最后根據(jù)面面平行的判定證明結(jié)論.(2)應(yīng)用勾股定理、等邊三角形的性質(zhì)、面面和線面垂直的性質(zhì)可證、、兩兩垂直,構(gòu)建空間直角坐標(biāo)系,求面BPC、面PCA的法向量,再應(yīng)用空間向量夾角的坐標(biāo)表示求二面角的余弦值.【小問1詳解】因為D,H分別是PA,PC的中點(diǎn),所以因為E,F(xiàn)分別是AB,BC的中點(diǎn),所以,綜上,,又平面PEF,平面PEF,所以平面PEF由題意,G是CF的中點(diǎn),又H是PC的中點(diǎn),所以,又平面PEF,平面PEF,所以平面PEF由,HG,平面DHG,所以平面平面DHG【小問2詳解】在△ABC中,AB=4,AC=2,,所以,所以,又,則因為△PAB為等邊三角形,點(diǎn)E為AB的中點(diǎn),所以,又平面平面ABC,平面平面ABC=AB,所以平面ABC,面ABC,故綜上,以E為坐標(biāo)原點(diǎn),以EB,EF,EP所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系,如圖所示,有,,,,則,,設(shè)平面BPC的法向量為,則,令,則設(shè)平面PCA的法向量為,則,令,則所以.由圖知,二面角的平面角為銳角,所以二面角的余弦值為19、(1);(2).【解析】(1)利用三角恒等變換思想化簡函數(shù)解析式為,然后解不等式,可得答案;(2)由計算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的最小值,進(jìn)而可求得實數(shù)的值.【詳解】(1),令,解得.所以,函數(shù)的單調(diào)遞增區(qū)間為;(2)當(dāng)時,,所以,所以,解得.20、(1)(2)存在,,【解析】(1)利用離心率和橢圓所過點(diǎn)列出方程組,求出,求出橢圓方程;(2)假設(shè)存在,分切線斜率存在和不存在分類討論,根據(jù)向量數(shù)量積為0求出r的值,表達(dá)出△AOB的面積,利用基本不等式求出的取值范圍,進(jìn)而求出△AOB面積的取值范圍.【小問1詳解】因為橢圓C:的離心率,且過點(diǎn)所以解得所以橢圓C的方程為【小問2詳解】假設(shè)存在⊙O:滿足題意,①切線方程l的斜率存在時,設(shè)切線方程l:y=kx+m與橢圓方程聯(lián)立,消去y得,(*)設(shè),,由題意知,(*)有兩解所以,即由根與系數(shù)的關(guān)系可得,所以因為,所以,即化簡得,且,O到直線l的距離所以,又,此時,所以滿足題意所以存在圓的方程為⊙O:△AOB的面積,又因為當(dāng)k≠0時當(dāng)且僅當(dāng)即時取等號又因為,所以,所以當(dāng)k=0時,②斜率不存在時,直線與橢圓交于兩點(diǎn)或兩點(diǎn)易知存在圓的方程為⊙O:且綜上,所以【點(diǎn)睛】求解圓錐曲線相關(guān)的三角形或四邊形面積取值范圍問題,需要先設(shè)出變量,表達(dá)出面積,利用基本不等式或者配方,導(dǎo)函數(shù)等求出最值,求出取值范圍,特別注意直線斜率存在和不存在的情況,需要分類討論.21、(1);;(2).【解析】(1)驗證可知數(shù)列是以為周期的周期數(shù)列,則,;(2)由(1)可求得,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論