版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
四川省樂至縣寶林中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在流行病學(xué)中,基本傳染數(shù)是指在沒有外力介入,同時(shí)所有人都沒有免疫力的情況下,一個(gè)感染者平均傳染的人數(shù).一般由疾病的感染周期、感染者與其他人的接觸頻率、每次接觸過程中傳染的概率決定.假設(shè)某種傳染病的基本傳染數(shù),平均感染周期為4天,那么感染人數(shù)超過1000人大約需要()(初始感染者傳染個(gè)人為第一輪傳染,這個(gè)人每人再傳染個(gè)人為第二輪傳染)A.20天 B.24天C.28天 D.32天2.的內(nèi)角A,B,C的對邊分別為a,b,c,若,則一定是()A.等邊三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形3.如圖,A,B,C三點(diǎn)不共線,O為平面ABC外一點(diǎn),且平面ABC中的小方格均為單位正方形,,,則()A.1 B.C.2 D.4.已知直線過點(diǎn),,則該直線的傾斜角是()A. B.C. D.5.下面四個(gè)說法中,正確說法的個(gè)數(shù)為()(1)如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合;(2)兩條直線可以確定一個(gè)平面;(3)若,,,則;(4)空間中,兩兩相交的三條直線在同一平面內(nèi).A.1 B.2C.3 D.46.已知數(shù)列的前項(xiàng)和為,當(dāng)時(shí),()A.11 B.20C.33 D.357.如圖,四面體-,是底面△的重心,,則()A B.C. D.8.已知函數(shù)在上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為()A. B.C. D.9.從裝有2個(gè)紅球和2個(gè)黑球的口袋內(nèi)任取兩個(gè)球,那么互斥而不對立的事件是()A.至少有一個(gè)黑球與都是黑球B.至少有一個(gè)黑球與至少有一個(gè)紅球C.恰好有一個(gè)黑球與恰好有兩個(gè)黑球D.至少有一個(gè)黑球與都是紅球10.已知點(diǎn)在平面α上,其法向量,則下列點(diǎn)不在平面α上的是()A. B.C. D.11.函數(shù)的部分圖像為()A. B.C. D.12.已知,則點(diǎn)到平面的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.用1,2,3,4排成的無重復(fù)數(shù)字的四位數(shù)中,其中1和2不能相鄰的四位數(shù)的個(gè)數(shù)為___________(用數(shù)字作答).14.直線l過點(diǎn)P(1,3),且它的一個(gè)方向向量為(2,1),則直線l的一般式方程為__________.15.在下列三個(gè)問題中:①甲乙二人玩勝負(fù)游戲:每人一次拋擲兩枚質(zhì)地均勻的硬幣,如果規(guī)定:同時(shí)出現(xiàn)正面或反面算甲勝,一個(gè)正面、一個(gè)反面算乙勝,那么這個(gè)游戲是公平的;②擲一枚骰子,估計(jì)事件“出現(xiàn)三點(diǎn)”的概率,當(dāng)拋擲次數(shù)很大時(shí),此事件發(fā)生的頻率接近其概率;③如果氣象預(yù)報(bào)1日—30日的下雨概率是,那么1日—30日中就有6天是下雨的;其中,正確的是___________.(用序號(hào)表示)16.某校學(xué)生在研究民間剪紙藝術(shù)時(shí),發(fā)現(xiàn)剪紙時(shí)經(jīng)常會(huì)沿紙的某條對稱軸把紙對折,規(guī)格為的長方形紙,對折1次共可以得到,兩種規(guī)格的圖形,它們的面積之和,對折2次共可以得到,,三種規(guī)格的圖形,它們的面積之和,以此類推,則對折4次共可以得到不同規(guī)格圖形的種數(shù)為______;如果對折次,那么______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列為等差數(shù)列,公差,前項(xiàng)和為,,且成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式(2)設(shè),求數(shù)列的前項(xiàng)和18.(12分)已知單調(diào)遞增的等比數(shù)列滿足:,且是,的等差中項(xiàng)(1)求數(shù)列的通項(xiàng)公式;(2)若,,求19.(12分)已知?jiǎng)訄A過定點(diǎn),且與直線相切,圓心的軌跡為(1)求動(dòng)點(diǎn)的軌跡方程;(2)已知直線交軌跡于兩點(diǎn),,且中點(diǎn)的縱坐標(biāo)為,則的最大值為多少?20.(12分)如圖,四棱錐中,,,,平面,點(diǎn)F在線段上運(yùn)動(dòng).(1)若平面,請確定點(diǎn)F的位置并說明理由;(2)若點(diǎn)F滿足,求平面與平面的夾角的余弦值.21.(12分)在等差數(shù)列中,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求.22.(10分)已知函數(shù).其中e為然對數(shù)的底數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若,討論函數(shù)零點(diǎn)個(gè)數(shù)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)題意列出方程,利用等比數(shù)列的求和公式計(jì)算n輪傳染后感染的總?cè)藬?shù),得到指數(shù)方程,求得近似解,然后可得需要的天數(shù).【詳解】感染人數(shù)由1個(gè)初始感染者增加到1000人大約需要n輪傳染,則每輪新增感染人數(shù)為,經(jīng)過n輪傳染,總共感染人數(shù)為:即,解得,所以感染人數(shù)由1個(gè)初始感染者增加到1000人大約需要24天,故選:B【點(diǎn)睛】等比數(shù)列基本量的求解是等比數(shù)列中的一類基本問題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運(yùn)用,尤其需要注意的是,在使用等比數(shù)列的前n項(xiàng)和公式時(shí),應(yīng)該要分類討論,有時(shí)還應(yīng)善于運(yùn)用整體代換思想簡化運(yùn)算過程2、B【解析】利用余弦定理化角為邊,從而可得出答案.【詳解】解:因?yàn)?,所以,則,所以,所以是等腰三角形.故選:B.3、B【解析】根據(jù)向量的線性運(yùn)算,將向量表示為,再根據(jù)向量的數(shù)量積的運(yùn)算進(jìn)行計(jì)算可得答案,【詳解】因?yàn)?,所?,故選:B.4、C【解析】根據(jù)直線的斜率公式即可求得答案.【詳解】設(shè)該直線的傾斜角為,該直線的斜率,即.故選:C5、A【解析】如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合或者是相交,即可判斷;利用兩條異面直線不能確定一個(gè)平面即可判斷;利用平面的基本性質(zhì)中的公理判斷即可;若兩兩相交的三條直線相交于同一點(diǎn),則相交于同一點(diǎn)的三直線不一定在同一平面內(nèi)(如棱錐的3條側(cè)棱),即可判斷.【詳解】如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合或者是相交,故(1)不正確;兩條異面直線不能確定一個(gè)平面,故(2)不正確;利用平面的基本性質(zhì)中的公理判斷(3)正確;空間中,若兩兩相交的三條直線相交于同一點(diǎn),則相交于同一點(diǎn)的三直線不一定在同一平面內(nèi)(如棱錐的3條側(cè)棱),故(4)不正確,綜上所述只有一個(gè)說法是正確的,故選:A【點(diǎn)睛】本題主要考查了空間中點(diǎn),線,面的位置關(guān)系.屬于較易題.6、B【解析】由數(shù)列的性質(zhì)可得,計(jì)算可得到答案.【詳解】由題意,.故答案為B.【點(diǎn)睛】本題考查了數(shù)列的前n項(xiàng)和的性質(zhì),屬于基礎(chǔ)題.7、B【解析】根據(jù)空間向量的加減運(yùn)算推出,進(jìn)而得出結(jié)果.【詳解】因?yàn)?,所以,故選:B8、D【解析】根據(jù)題意參變分離得到,求出的最小值,進(jìn)而求出實(shí)數(shù)a的取值范圍.【詳解】由題意得:在上恒成立,即,其中在處取得最小值,,所以,解得:,故選:D9、C【解析】列舉每個(gè)事件所包含的基本事件,結(jié)合互斥事件和對立事件的定義,逐項(xiàng)判斷.【詳解】A:事件:“至少有一個(gè)黑球”與事件:“都是黑球”可以同時(shí)發(fā)生,如:兩個(gè)都是黑球,這兩個(gè)事件不是互斥事件,故錯(cuò)誤;B:事件:“至少有一個(gè)黑球”與事件:“至少有一個(gè)紅球”可以同時(shí)發(fā)生,如:一個(gè)紅球一個(gè)黑球,故錯(cuò)誤;C:事件:“恰好有一個(gè)黑球”與事件:“恰有兩個(gè)黑球”不能同時(shí)發(fā)生,但從口袋中任取兩個(gè)球時(shí)還有可能是兩個(gè)都是紅球,兩個(gè)事件是互斥事件但不是對立事件,故正確D:事件:“至少有一個(gè)黑球”與“都是紅球”不能同時(shí)發(fā)生,但一定會(huì)有一個(gè)發(fā)生,這兩個(gè)事件是對立事件,故錯(cuò)誤;故選:C10、D【解析】根據(jù)法向量的定義,利用向量垂直對四個(gè)選項(xiàng)一一驗(yàn)證即可.【詳解】對于A:記,則.因?yàn)?,所以點(diǎn)在平面α上對于B:記,則.因?yàn)椋渣c(diǎn)在平面α上對于C:記,則.因?yàn)?,所以點(diǎn)在平面α上對于D:記,則.因?yàn)?,所以點(diǎn)不在平面α上.故選:D11、D【解析】先判斷奇偶性排除C,再利用排除B,求導(dǎo)判斷單調(diào)性可排除A.【詳解】因?yàn)椋詾榕己瘮?shù),排除C;因?yàn)?,排除B;當(dāng)時(shí),,,當(dāng)時(shí),,所以函數(shù)在區(qū)間上單調(diào)遞減,排除A.故選:D12、A【解析】根據(jù)給定條件求出平面的法向量,再利用空間向量求出點(diǎn)到平面的距離.【詳解】依題意,,設(shè)平面的法向量,則,令,得,則點(diǎn)到平面的距離為,所以點(diǎn)到平面的距離為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用插空法計(jì)算出正確答案.【詳解】先排,形成個(gè)空位,然后將排入,所以符合題意的四位數(shù)的個(gè)數(shù)為.故答案為:14、【解析】根據(jù)直線方向向量求出直線斜率即可得直線方程.【詳解】因?yàn)橹本€l的一個(gè)方向向量為(2,1),所以其斜率,所以l方程為:,即其一般式方程為:.故答案為:.15、①②【解析】以甲乙獲勝概率是否均為來判斷游戲是否公平,并以此來判斷①的正確性;以頻率和概率的關(guān)系來判斷②③的正確性.【詳解】①中:甲乙二人玩勝負(fù)游戲:每人一次拋擲兩枚質(zhì)地均勻的硬幣,可得4種可能的結(jié)果:(正,正),(正,反),(反,正),(反,反)則“同時(shí)出現(xiàn)正面或反面”的概率為,“一個(gè)正面、一個(gè)反面”的概率為即甲乙二人獲勝的概率均為,那么這個(gè)游戲是公平的.判斷正確;②中:“擲一枚骰子出現(xiàn)三點(diǎn)”是一個(gè)隨機(jī)事件,當(dāng)拋擲次數(shù)很大時(shí),此事件發(fā)生的頻率會(huì)穩(wěn)定于其概率值,故此事件發(fā)生的頻率接近其概率.判斷正確;③中:氣象預(yù)報(bào)1日—30日的下雨概率是,那么1日—30日每天下雨的概率均是,每天都有可能下雨也可能不下雨,故1日—30日中出現(xiàn)下雨的天數(shù)是隨機(jī)的,可能是0天,也可能是1天、2天、3天……,不一定是6天.判斷錯(cuò)誤.故答案為:①②16、①.5②.【解析】(1)按對折列舉即可;(2)根據(jù)規(guī)律可得,再根據(jù)錯(cuò)位相減法得結(jié)果.【詳解】(1)由對折2次共可以得到,,三種規(guī)格的圖形,所以對著三次的結(jié)果有:,共4種不同規(guī)格(單位;故對折4次可得到如下規(guī)格:,,,,,共5種不同規(guī)格;(2)由于每次對著后的圖形的面積都減小為原來的一半,故各次對著后的圖形,不論規(guī)格如何,其面積成公比為的等比數(shù)列,首項(xiàng)為120,第n次對折后的圖形面積為,對于第n此對折后的圖形的規(guī)格形狀種數(shù),根據(jù)(1)的過程和結(jié)論,猜想為種(證明從略),故得猜想,設(shè),則,兩式作差得:,因此,.故答案為:;.【點(diǎn)睛】方法點(diǎn)睛:數(shù)列求和的常用方法:(1)對于等差等比數(shù)列,利用公式法可直接求解;(2)對于結(jié)構(gòu),其中是等差數(shù)列,是等比數(shù)列,用錯(cuò)位相減法求和;(3)對于結(jié)構(gòu),利用分組求和法;(4)對于結(jié)構(gòu),其中是等差數(shù)列,公差為,則,利用裂項(xiàng)相消法求和.解答題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)根據(jù)成等比數(shù)列,有,即求解.(2)由(1)可得,,∴,再利用裂項(xiàng)相消法求和.【詳解】(1)由成等比數(shù)列,得,即,整理得,∵,∴,∴,即(2)由(1)可得,,∴,故【點(diǎn)睛】本題主要考查等差數(shù)列的基本運(yùn)算和裂項(xiàng)相消法求和,還考查了運(yùn)算求解的能力,屬于中檔題.18、(1);(2)【解析】(1)將已知條件整理變形為等比數(shù)列的首項(xiàng)和公比來表示,解方程組得到基本量,可得到通項(xiàng)公式(2)化簡通項(xiàng)得,根據(jù)特點(diǎn)求和時(shí)采用錯(cuò)位相減法求解試題解析:(1)設(shè)等比數(shù)列的首項(xiàng)為,公比為,依題意,有2()=+,代入,得=8,2分∴+=20∴解之得或4分又單調(diào)遞增,∴="2,"=2,∴=2n6分(2),∴①8分∴②∴①-②得=12分考點(diǎn):1.等比數(shù)列通項(xiàng)公式;2.錯(cuò)位相減求和19、(1)(2)【解析】(1)利用拋物線的定義直接可得軌跡方程;(2)設(shè)直線方程,聯(lián)立方程組,結(jié)合根與系數(shù)關(guān)系可得,再根據(jù)二次函數(shù)的性質(zhì)可得最值.【小問1詳解】由題設(shè)點(diǎn)到點(diǎn)的距離等于它到的距離,點(diǎn)的軌跡是以為焦點(diǎn),為準(zhǔn)線的拋物線,所求軌跡的方程為;【小問2詳解】由題意易知直線的斜率存在,設(shè)中點(diǎn)為,直線的方程為,聯(lián)立直線與拋物線,得,,且,,又中點(diǎn)為,即,,故恒成立,,,所以,當(dāng)時(shí),取最大值為.【點(diǎn)睛】(1)直線與拋物線的位置關(guān)系和直線與橢圓、雙曲線的位置關(guān)系類似,一般要用到根與系數(shù)的關(guān)系;(2)有關(guān)直線與拋物線的弦長問題,要注意直線是否過拋物線的焦點(diǎn),若過拋物線的焦點(diǎn),可直接使用公式|AB|=x1+x2+p,若不過焦點(diǎn),則必須用一般弦長公式20、(1)F為BD的中點(diǎn),證明見解析;(2).【解析】(1)由為的中點(diǎn),取的中點(diǎn),連接易證四邊形為平行四邊形,得到,再利用線面平行的判定定理證明;(2)根據(jù)題意可得平面ABC與平面AFC的夾角為二面角,取的中點(diǎn)H為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,分別求得平面的一個(gè)法向量,平面的一個(gè)法向量,設(shè)二面角為,由求解.【小問1詳解】為的中點(diǎn).如圖:取的中點(diǎn),連接∵,分別為,的中點(diǎn),∴且∵且∴平行且等于∴四邊形為平行四邊形,則∵平面ABC,平面ABC∴平面ABC【小問2詳解】由題意知,平面ABC與平面AFC的夾角為二面角,取的中點(diǎn)H為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.因?yàn)槿切螢榈妊切?,易求,則,,所以,,設(shè)平面的一個(gè)法向量為,則,即,解得設(shè)平面的一個(gè)法向量為,則,即,解得設(shè)二面角為,則,因?yàn)槎娼菫殇J角,所以余弦值為.21、(1)(2)1280【解析】(1)直接利用等差數(shù)列通項(xiàng)公式即可求解;(2)先判斷出數(shù)列單調(diào)性,由,則時(shí),,時(shí),;然后去掉絕對值,利用等差數(shù)列的前項(xiàng)和公式求解即可.【小問1詳解】設(shè)數(shù)列的公差為,由,可知,∴;【小問2詳解】由(1)知,數(shù)列為單調(diào)遞減數(shù)列,由,則時(shí),,時(shí),;.22、(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和;(2)當(dāng)時(shí),無零點(diǎn);當(dāng)時(shí),有1個(gè)零點(diǎn);當(dāng)時(shí),有2個(gè)零點(diǎn).【解析】(1)求導(dǎo),令導(dǎo)數(shù)大于零求增區(qū)間,令導(dǎo)數(shù)小于零求減區(qū)間;(2)求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《現(xiàn)代建筑深度研究》課件
- 《房地產(chǎn)廣告》課件
- 小學(xué)一年級(jí)10以內(nèi)連加連減口算練習(xí)題1080道
- 一位高中生的懺悔高考語文閱讀理解
- 《汽車知識(shí)簡述》課件
- 《初中數(shù)學(xué)打折銷售》課件
- 等離子弧焊類型、原理及其安全特點(diǎn)
- 酒店服務(wù)員的職責(zé)和要求
- 律師行業(yè)安全生產(chǎn)工作總結(jié)
- 財(cái)務(wù)培訓(xùn)與職業(yè)發(fā)展總結(jié)
- 2025年遼寧省大連市普通高中學(xué)業(yè)水平合格性考試模擬政治試題(一)
- 云南省昆明市五華區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末數(shù)學(xué)試卷
- 當(dāng)代中國外交(外交學(xué)院)知到智慧樹章節(jié)測試課后答案2024年秋外交學(xué)院
- 大學(xué)生職業(yè)生涯規(guī)劃
- 干燥綜合征的護(hù)理查房
- 【MOOC】財(cái)務(wù)管理-四川大學(xué) 中國大學(xué)慕課MOOC答案
- 2023-2024學(xué)年浙江省杭州市上城區(qū)教科版四年級(jí)上冊期末考試科學(xué)試卷
- 交通管理扣留車輛拖移保管 投標(biāo)方案(技術(shù)方案)
- 五年級(jí)數(shù)學(xué)上冊七大重點(diǎn)類型應(yīng)用題
- 期末 (試題) -2024-2025學(xué)年人教PEP版英語五年級(jí)上冊
- 《三國志》導(dǎo)讀學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
評論
0/150
提交評論