![江蘇省鹽城市鹽城中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第1頁(yè)](http://file4.renrendoc.com/view14/M05/1D/10/wKhkGWckao-ASabIAAHC82l8dng834.jpg)
![江蘇省鹽城市鹽城中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第2頁(yè)](http://file4.renrendoc.com/view14/M05/1D/10/wKhkGWckao-ASabIAAHC82l8dng8342.jpg)
![江蘇省鹽城市鹽城中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第3頁(yè)](http://file4.renrendoc.com/view14/M05/1D/10/wKhkGWckao-ASabIAAHC82l8dng8343.jpg)
![江蘇省鹽城市鹽城中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第4頁(yè)](http://file4.renrendoc.com/view14/M05/1D/10/wKhkGWckao-ASabIAAHC82l8dng8344.jpg)
![江蘇省鹽城市鹽城中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第5頁(yè)](http://file4.renrendoc.com/view14/M05/1D/10/wKhkGWckao-ASabIAAHC82l8dng8345.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省鹽城市鹽城中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.甲烷是一種有機(jī)化合物,分子式為,其在自然界中分布很廣,是天然氣、沼氣的主要成分.如圖所示的為甲烷的分子結(jié)構(gòu)模型,已知任意兩個(gè)氫原子之間的距離(H-H鍵長(zhǎng))相等,碳原子到四個(gè)氫原子的距離(C-H鍵長(zhǎng))均相等,任意兩個(gè)H-C-H鍵之間的夾角為(鍵角)均相等,且它的余弦值為,即,若,則以這四個(gè)氫原子為頂點(diǎn)的四面體的體積為()A. B.C. D.2.橢圓焦距為()A. B.8C.4 D.3.下列函數(shù)的求導(dǎo)正確的是()A. B.C. D.4.曲線在點(diǎn)處的切線方程是A. B.C. D.5.若,則x的值為()A.4 B.6C.4或6 D.86.已知圓錐的表面積為,且它的側(cè)面展開(kāi)圖是一個(gè)半圓,則這個(gè)圓錐的體積為()A. B.C. D.7.如圖,在平行六面體中,底面是邊長(zhǎng)為的正方形,若,且,則的長(zhǎng)為()A. B.C. D.8.平行六面體中,若,則()A. B.1C. D.9.在區(qū)間內(nèi)隨機(jī)取一個(gè)數(shù),則方程表示焦點(diǎn)在軸上的橢圓的概率是A. B.C. D.10.變量,滿足約束條件則的最小值為()A. B.C. D.511.若雙曲線經(jīng)過(guò)點(diǎn),且它的兩條漸近線方程是,則雙曲線的方程是()A. B.C. D.12.已知橢圓的左、右焦點(diǎn)分別為,,焦距為,過(guò)點(diǎn)作軸的垂線與橢圓相交,其中一個(gè)交點(diǎn)為點(diǎn)(如圖所示),若的面積為,則橢圓的方程為()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知命題:平面上一矩形ABCD的對(duì)角線AC與邊AB和AD所成角分別為,則,若把它推廣到空間長(zhǎng)方體中,體對(duì)角線與平面,平面,平面所成的角分別為,則可以類比得到的結(jié)論為_(kāi)__________________.14.已知,為橢圓C的焦點(diǎn),點(diǎn)P在橢圓C上,,則的面積為_(kāi)__________.15.已知,若三個(gè)數(shù)成等差數(shù)列,則_________;若三個(gè)數(shù)成等比數(shù)列,則__________16.已知雙曲線與橢圓有公共的左、右焦點(diǎn)分別為,,以線段為直徑的圓與雙曲線C及其漸近線在第一象限內(nèi)分別交于M,N兩點(diǎn),且線段的中點(diǎn)在另一條漸近線上,則的面積為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在一個(gè)盒子中裝有四個(gè)形狀大小完全相同的球,球的編號(hào)分別為1,2,3,4,先從盒子中隨機(jī)取出一個(gè)球,該球的編號(hào)記為,將球放回盒子中,然后再?gòu)暮凶又须S機(jī)取出一個(gè)球,該球的編號(hào)記為.(1)寫出試驗(yàn)的樣本空間;(2)求“”的概率.18.(12分)在空間直角坐標(biāo)系Oxyz中,O為原點(diǎn),已知點(diǎn),,,設(shè)向量,.(1)求與夾角的余弦值;(2)若與互相垂直,求實(shí)數(shù)k的值.19.(12分)如圖,在三棱錐P-ABC中,△ABC是以AC為底的等腰直角三角形,PA=PB=PC=AC=4,O為AC的中點(diǎn).(1)證明:PO⊥平面ABC;(2)若點(diǎn)M在棱BC上,且,求平面MAP與平面CAP所成角的大小.20.(12分)已知拋物線C:,過(guò)點(diǎn)且斜率為k的直線與拋物線C相交于P,Q兩點(diǎn).(1)設(shè)點(diǎn)B在x軸上,分別記直線PB,QB的斜率為.若,求點(diǎn)B的坐標(biāo);(2)過(guò)拋物線C的焦點(diǎn)F作直線PQ的平行線與拋物線C相交于M,N兩點(diǎn),求的值.21.(12分)設(shè)等差數(shù)列的前n項(xiàng)和為,已知(1)求數(shù)列通項(xiàng)公式;(2)設(shè),數(shù)列的前n項(xiàng)和為.定義為不超過(guò)x的最大整數(shù),例如.當(dāng)時(shí),求n的值22.(10分)某中醫(yī)藥研究所研制出一種新型抗過(guò)敏藥物,服用后需要檢驗(yàn)血液抗體是否為陽(yáng)性,現(xiàn)有n(n∈N*)份血液樣本,每個(gè)樣本取到的可能性均等,有以下兩種檢驗(yàn)方式:①逐份檢驗(yàn),需要檢驗(yàn)n次;②混合檢驗(yàn),將其中k(k∈N*,2≤k≤n)份血液樣本分別取樣混合在一起檢驗(yàn),若結(jié)果為陰性,則這k份的血液全為陰性,因而這k份血液樣本只需檢驗(yàn)一次就夠了,若檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這k份血液究竟哪份為陽(yáng)性,就需要對(duì)這k份再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為k+1次.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是相互獨(dú)立的,且每份樣本是陽(yáng)性的概率為p(0<p<1).(1)假設(shè)有5份血液樣本,其中只有兩份樣本為陽(yáng)性,若采取逐份檢驗(yàn)的方式,求恰好經(jīng)過(guò)3次檢驗(yàn)就能把陽(yáng)性樣本全部檢驗(yàn)出來(lái)的概率.(2)現(xiàn)取其中的k(k∈N*,2≤k≤n)份血液樣本,采用逐份檢驗(yàn)的方式,樣本需要檢驗(yàn)的次數(shù)記為ξ1;采用混合檢驗(yàn)的方式,樣本需要檢驗(yàn)的總次數(shù)記為ξ2.(i)若k=4,且,試運(yùn)用概率與統(tǒng)計(jì)的知識(shí),求p的值;(ii)若,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】利用余弦定理求得,計(jì)算出正四面體的高,從而計(jì)算出正四面體的體積.【詳解】設(shè),則由余弦定理知:,解得,故該正四面體的棱長(zhǎng)均為由正弦定理可知:該正四面體底面外接圓的半徑,高故該正四面體的體積為故選:A2、A【解析】由題意橢圓的焦點(diǎn)在軸上,故,求解即可【詳解】由題意,,故橢圓的焦點(diǎn)在軸上故焦距故選:A3、B【解析】對(duì)各個(gè)選項(xiàng)進(jìn)行導(dǎo)數(shù)運(yùn)算驗(yàn)證即可.【詳解】,故A錯(cuò)誤;,故B正確;,故C錯(cuò)誤;,故D錯(cuò)誤.故選:B4、D【解析】先求導(dǎo)數(shù),得切線的斜率,再根據(jù)點(diǎn)斜式得切線方程.【詳解】,選D.點(diǎn)睛】本題考查導(dǎo)數(shù)幾何意義以及直線點(diǎn)斜式方程,考查基本求解能力,屬基礎(chǔ)題.5、C【解析】根據(jù)組合數(shù)的性質(zhì)可求解.【詳解】,或,即或.故選:C6、D【解析】設(shè)圓錐的半徑為,母線長(zhǎng),根據(jù)已知條件求出、的值,可求得該圓錐的高,利用錐體的體積公式可求得結(jié)果.【詳解】設(shè)圓錐的半徑為,母線長(zhǎng),因?yàn)閭?cè)面展開(kāi)圖是一個(gè)半圓,則,即,又圓錐的表面積為,則,解得,,則圓錐的高,所以圓錐的體積,故選:D.7、D【解析】由向量線性運(yùn)算得,利用數(shù)量積的定義和運(yùn)算律可求得,由此可求得.【詳解】由題意得:,,且,又,,,,.故選:D.8、D【解析】根據(jù)空間向量的運(yùn)算,表示出,和已知比較可求得的值,進(jìn)而求得答案.【詳解】在平行六面體中,有,故由題意可知:,即,所以,故選:D.9、D【解析】若方程表示焦點(diǎn)在軸上的橢圓,則,解得,,故方程表示焦點(diǎn)在軸上的橢圓的概率是,故選D.10、A【解析】根據(jù)不等式組,作出可行域,數(shù)形結(jié)合即可求z的最小值.【詳解】根據(jù)不等式組作出可行域如圖,,則直線過(guò)A(-1,0)時(shí),z取最小值.故選:A.11、A【解析】根據(jù)雙曲線漸近線方程設(shè)出方程,再由其過(guò)的點(diǎn)即可求解.【詳解】漸近線方程是,設(shè)雙曲線方程為,又因?yàn)殡p曲線經(jīng)過(guò)點(diǎn),所以有,所以雙曲線方程為,化為標(biāo)準(zhǔn)方程為.故選:A12、A【解析】由題意可得,令,可得,再由三角形的面積公式,解方程可得,,即可得到所求橢圓的方程【詳解】由題意可得,即,即有,令,則,可得,則,即,解得,,∴橢圓的方程為故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先由線面角的定義得到,再計(jì)算的值即可得到結(jié)論【詳解】在長(zhǎng)方體中,連接,在長(zhǎng)方體中,平面,所以對(duì)角線與平面所成的角為,對(duì)角線與平面所成的角為,對(duì)角線與平面所成的角為,顯然,,,所以,,故答案為:14、##【解析】設(shè),然后根據(jù)橢圓的定義和余弦定理列方程組可求出,再由三角形的面積公式可求得結(jié)果【詳解】由,得,則,設(shè),則,在中,,由余弦定理得,,所以,所以,所以,所以,故答案為:15、①.4②.【解析】由等差中項(xiàng)與等比中項(xiàng)計(jì)算即可.【詳解】若a,b,c三個(gè)數(shù)成等差數(shù)列.所以.若a,b,c三個(gè)數(shù)成等比數(shù)列.所以故答案為:4,.16、【解析】求出橢圓焦點(diǎn)坐標(biāo),即雙曲線焦點(diǎn)坐標(biāo),即雙曲線的半焦距,再求出點(diǎn)坐標(biāo),利用中點(diǎn)在漸近線上得出的關(guān)系式,從而求得,然后可計(jì)算面積【詳解】由題意橢圓中,即,以線段為直徑的圓的方程為,由,解得(取第一象限交點(diǎn)坐標(biāo)),,雙曲線的不在第一象限的漸近線方程為,,的中點(diǎn)坐標(biāo)為,它在漸近線上,所以,化簡(jiǎn)得,又,所以,雙曲線方程為,則得,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)【解析】(1)利用列舉法列出試驗(yàn)的樣本空間,(2)由(1)可知共有16種情況,其中和為5的有4種,然后利用古典概型的概率公式求解即可【小問(wèn)1詳解】由題意可知試驗(yàn)的樣本空間為:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)【小問(wèn)2詳解】由(1)可知共有16種等可能情況,其中滿足的有:(1,4),(2,3),(3,2),(4,1),4種,所以“”的概率為18、(1)(2)【解析】(1)由向量的坐標(biāo)先求出,,,由向量的夾角公式可得答案.(2)由題意可得,從而求出參數(shù)的值【小問(wèn)1詳解】由題,,,故,,,所以故與夾角余弦值為.【小問(wèn)2詳解】由與的互相垂直知,,,即19、(1)證明見(jiàn)解析(2)【解析】(1)接BO,由是等邊三角形得,由得出,再利用線面垂直的判斷定理可得平面;(2)建立以為坐標(biāo)原點(diǎn),分別為軸的空間直角坐標(biāo)系,求出平面的法向量、平面的法向量,利用二面角的向量求法可得答案.【小問(wèn)1詳解】連接BO,由已知△ABC是以AC為底的等腰直角三角形,且PA=PB=PC=AC=4,O為AC的中點(diǎn),則是等邊三角形,,,在中,,滿足,即是直角三角形,則,又,平面,所以平面.【小問(wèn)2詳解】建立以為坐標(biāo)原點(diǎn),分別為軸的空間直角坐標(biāo)系如圖所示,則,,,,則平面的法向量為,由已知,得到點(diǎn)坐標(biāo),,設(shè)平面的法向量則,令,則,即,設(shè)平面MAP與平面CAP所成角為,則,則平面MAP與平面CAP所成角為.20、(1)(2)【解析】(1)直線的方程為,其中,聯(lián)立直線與拋物線方程,由韋達(dá)定理結(jié)合已知條件可求得點(diǎn)的坐標(biāo);(2)直線的方程為,利用傾斜角定義知,,聯(lián)立直線與拋物線方程,利用弦長(zhǎng)公式求得,進(jìn)而得解.小問(wèn)1詳解】由題意,直線的方程為,其中.設(shè),聯(lián)立,消去得..,,即.,即.,,∴點(diǎn)的坐標(biāo)為.【小問(wèn)2詳解】由題意,直線的方程為,其中,為傾斜角,則,設(shè).聯(lián)立,消去得...21、(1)(2)10【解析】(1)由等差數(shù)列的前項(xiàng)和公式求得公差,可得通項(xiàng)公式;(2)用裂項(xiàng)相消法求和求得,根據(jù)新定義求得,然后分組,結(jié)合等差數(shù)列的前項(xiàng)和公式計(jì)算后解方程可得【小問(wèn)1詳解】設(shè)等差數(shù)列的公差為d,因?yàn)?,則.因?yàn)?,則,得.所以數(shù)列的通項(xiàng)公式是【小問(wèn)2詳解】因?yàn)?,則所以.當(dāng)時(shí),因?yàn)?,則.當(dāng)時(shí),因?yàn)?,則.因?yàn)椋瑒t,即,即,即.因?yàn)?,所?2、(1);(2)(i);(ii)證明見(jiàn)解析.【解析】(1)設(shè)恰好經(jīng)過(guò)3次檢驗(yàn)就能把陽(yáng)性樣本全部檢驗(yàn)出來(lái)為事件A
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能倉(cāng)儲(chǔ)卷簾門系統(tǒng)采購(gòu)及集成合同
- 2025年度區(qū)塊鏈技術(shù)應(yīng)用項(xiàng)目開(kāi)發(fā)與許可合同
- 2025年休假村租賃協(xié)議模板
- 2025年建筑工程模板工程承包合同書
- 2025年信用卡債務(wù)履行協(xié)議
- 2025年金剛石膜工具項(xiàng)目立項(xiàng)申請(qǐng)報(bào)告模范
- 2025年血液系統(tǒng)用藥項(xiàng)目規(guī)劃申請(qǐng)報(bào)告模范
- 2025年街頭籃球項(xiàng)目規(guī)劃申請(qǐng)報(bào)告
- 2025年放射性藥品項(xiàng)目提案報(bào)告模式
- 2025年生活用橡膠制品:塑膠盒項(xiàng)目規(guī)劃申請(qǐng)報(bào)告范文
- 2022人臉識(shí)別安全白皮書
- 【建模教程】-地質(zhì)統(tǒng)計(jì)學(xué)礦體建模簡(jiǎn)明教材
- 無(wú)人機(jī)應(yīng)用案例-石油領(lǐng)域油氣管線巡查
- DB23T 2656-2020樺樹(shù)液采集技術(shù)規(guī)程
- 重源煤礦 礦業(yè)權(quán)價(jià)款計(jì)算書
- PSM工藝安全管理
- GB/T 21872-2008鑄造自硬呋喃樹(shù)脂用磺酸固化劑
- 上海市中小學(xué)生語(yǔ)文學(xué)業(yè)質(zhì)量綠色指標(biāo)測(cè)試
- GA/T 501-2020銀行保管箱
- 《育兒百科》松田道雄(最新版)
- 軸對(duì)稱圖形導(dǎo)學(xué)案
評(píng)論
0/150
提交評(píng)論