湖南省邵陽市邵陽縣2025屆數學高二上期末質量跟蹤監(jiān)視模擬試題含解析_第1頁
湖南省邵陽市邵陽縣2025屆數學高二上期末質量跟蹤監(jiān)視模擬試題含解析_第2頁
湖南省邵陽市邵陽縣2025屆數學高二上期末質量跟蹤監(jiān)視模擬試題含解析_第3頁
湖南省邵陽市邵陽縣2025屆數學高二上期末質量跟蹤監(jiān)視模擬試題含解析_第4頁
湖南省邵陽市邵陽縣2025屆數學高二上期末質量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省邵陽市邵陽縣2025屆數學高二上期末質量跟蹤監(jiān)視模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等差數列中,為其前項和,,則的值為()A.13 B.16C.104 D.2082.若則()A.?2 B.?1C.1 D.23.圓與圓的位置關系是()A.外離 B.外切C.相交 D.內切4.已知實數x,y滿足約束條件,則的最大值為()A. B.0C.3 D.55.設平面向量,,其中m,,記“”為事件A,則事件A發(fā)生的概率為()A. B.C. D.6.命題“存在,”的否定是()A.存在, B.存在,C.對任意, D.對任意,7.過原點O作兩條相互垂直的直線分別與橢圓交于A、C與B、D,則四邊形ABCD面積最小值為()A B.C. D.8.①命題設“,若,則或”;②若“”為真命題,則p,q均為真命題;③“”是函數為偶函數的必要不充分條件;④若為空間的一個基底,則構成空間的另一基底;其中正確判斷的個數是()A.1 B.2C.3 D.49.已如雙曲線(,)的左、右焦點分別為,,過的直線交雙曲線的右支于A,B兩點,若,且,則該雙曲線的離心率為()A. B.C. D.10.若點P在曲線上運動,則點P到直線的距離的最大值為()A. B.2C. D.411.在三棱錐中,平面,,,,Q是邊上的一動點,且直線與平面所成角的最大值為,則三棱錐的外接球的表面積為()A. B.C. D.12.與直線平行,且經過點(2,3)的直線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數的導數_________________.14.定義在上的函數滿足:有成立且,則不等式的解集為__________15.已知內角A,B,C的對邊為a,b,c,已知,且,則c的最小值為__________.16.已知為坐標原點,、分別是雙曲線的左、右頂點,是雙曲線上不同于、的動點,直線、與軸分別交于點、兩點,則________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線上一點到焦點的距離與到軸的距離相等.(1)求拋物線的方程;(2)若直線與拋物線交于A,兩點,且滿足(為坐標原點),證明:直線與軸的交點為定點.18.(12分)已知直線和的交點為P,求:(1)過點P且與直線垂直的直線l的方程;(2)以點P為圓心,且與直線相交所得弦長為12的圓的方程;(3)從下面①②兩個問題中選一個作答,①若直線l過點,且與兩坐標軸的正半軸所圍成的三角形面積為,求直線l的方程②求圓心在直線上,與x軸相切,被直線截得的弦長的圓的方程注:如果選擇兩個問題分別作答,按第一個計分19.(12分)已知數列的前n項和為,且.(1)求數列的通項公式;(2)令,求數列的前n項和.20.(12分)各項都為正數的數列的前項和為,且滿足.(1)求數列的通項公式;(2)求;(3)設,數列的前項和為,求使成立的的最小值.21.(12分)如圖,在直三棱柱中,,,,點是的中點.(1)求證:;(2)求證:平面.22.(10分)已知圓C經過、兩點,且圓心在直線上(1)求圓C的方程;(2)若直線經過點且與圓C相切,求直線的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用等差數列下標的性質,結合等差數列前項和公式進行求解即可.【詳解】由,所以,故選:D2、B【解析】分子分母同除以,化弦為切,代入即得結果.【詳解】由題意,分子分母同除以,可得.故選:B.3、C【解析】利用圓心距與半徑的關系確定正確選項.【詳解】圓的圓心為,半徑為,圓的圓心為,半徑為,圓心距為,,所以兩圓相交.故選:C4、D【解析】先畫出可行域,由,得,作出直線,向上平移過點A時,取得最大值,求出點A的坐標,代入可求得結果【詳解】不等式組表示的可行域,如圖所示由,得,作出直線,向上平移過點A時,取得最大值,由,得,即,所以的最大值為,故選:D5、D【解析】由向量的數量積公式結合古典概型概率公式得出事件A發(fā)生的概率.【詳解】由題意可知,即,因為所有的基本事件共有種,其中滿足的為,,只有1種,所以事件A發(fā)生的概率為.故選:D6、D【解析】特稱命題的否定:將存在改任意并否定原結論,即可知正確答案.【詳解】由特稱命題的否定為全稱命題,知:原命題的否定為:對任意,.故選:D7、A【解析】直線AC、BD與坐標軸重合時求出四邊形面積,與坐標軸不重合求出四邊形ABCD面積最小值,再比較大小即可作答.【詳解】因四邊形ABCD的兩條對角線互相垂直,由橢圓性質知,四邊形ABCD的四個頂點為橢圓頂點時,而,四邊形ABCD的面積,當直線AC斜率存在且不0時,設其方程為,由消去y得:,設,則,,直線BD方程為,同理得:,則有,當且僅當,即或時取“=”,而,所以四邊形ABCD面積最小值為.故選:A8、B【解析】利用逆否命題、含有邏輯聯結詞命題的真假性、充分和必要條件、空間基底等知識對四個判斷進行分析,由此確定正確答案.【詳解】①,原命題的逆否命題為“,若且,則”,逆否命題是真命題,所以原命題是真命題,①正確.②,若“”為真命題,則p,q至少有一個真命題,②錯誤.③,函數為偶函數的充要條件是“”.所以“”是函數為偶函數的充分不必要條件,③錯誤.④,若為空間的一個基底,即不共面,若共面,則存在不全為零的,使得,故,因為為空間的一個基底,,故,矛盾,故不共面,所以構成空間的另一基底,④正確.所以正確的判斷是個.故選:B9、A【解析】先作輔助線,設出邊長,結合題干條件得到,,利用勾股定理得到關于的等量關系,求出離心率.【詳解】連接,設,則根據可知,,因為,由勾股定理得:,由雙曲線定義可知:,,解得:,,從而,解得:,所以,,由勾股定理得:,從而,即該雙曲線的離心率為.故選:A10、A【解析】由方程確定曲線的形狀,然后轉化為求圓上的點到直線距離的最大值【詳解】由曲線方程為知曲線關于軸成軸對稱,關于原點成中心對稱圖形,在第一象限內,方程化為,即,在第一象限內,曲線是為圓心,為半徑的圓在第一象限的圓?。ê鴺溯S上的點),實際上整個曲線就是這段圓弧及其關于坐標軸.原點對稱的圖形加上原點,點到直線的距離為,所以所求最大值為故選:A11、C【解析】由平面,直線與平面所成角的最大時,最小,也即最小,,由此可求得,從而得,得長,然后取外心,作,取H為的中點,使得,則易得,求出的長即為外接球半徑,從而可得面積【詳解】三棱錐中,平面,直線與平面所成角為,如圖所示;則,且的最大值是,,的最小值是,即A到的距離為,,,在中可得,又,,可得;取的外接圓圓心為,作,取H為的中點,使得,則易得,由,解得,,,,由勾股定理得,所以三棱錐的外接球的表面積是.【點睛】本題考查求球的表面積,解題關鍵是確定球的球心,三棱錐的外接球心在過各面外心且與此面垂直的直線上12、C【解析】由直線平行及直線所過的點,應用點斜式寫出直線方程即可.【詳解】與直線平行,且經過點(2,3)的直線的方程為,整理得故選:C二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】根據初等函數的導數法則和導數的四則運算法則,準確運算,即可求解.【詳解】由題意,函數,可得.故答案為:.14、【解析】由,判斷出函數的單調性,利用單調性解即可【詳解】設,又有成立,函數,即是上的增函數,,即,,故答案為:15、【解析】先利用正弦定理邊化角式子,得到,再利用正弦定理求出,根據與的關系,求得,即可求得c的最小值.【詳解】,即,又,當最大時,即,最小,且為由正弦定理得:,當時,c的最小值為故答案為:【點睛】方法點睛:在解三角形題目中,若已知條件同時含有邊和角,但不能直接使用正弦定理或余弦定理得到答案,要選擇“邊化角”或“角化邊”,變換原則常用:(1)若式子含有的齊次式,優(yōu)先考慮正弦定理,“角化邊”;(2)若式子含有的齊次式,優(yōu)先考慮正弦定理,“邊化角”;(3)若式子含有的齊次式,優(yōu)先考慮余弦定理,“角化邊”;(4)代數變形或者三角恒等變換前置;(5)同時出現兩個自由角(或三個自由角)時,要用到.16、3【解析】求得坐標,設出點坐標,求得直線的方程,由此求得兩點的縱坐標,進而求得.【詳解】依題意,設,則,直線的方程為,則,直線的方程為,則,所以.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)利用拋物線點,n)到焦點的距離等于到x軸的距離求出,從而得到拋物線的標準方程(2)聯立直線與拋物線方程,通過韋達定理求出直線方程,然后由,即可求解【小問1詳解】由題意可得,故拋物線方程為;【小問2詳解】設,,,,直線的方程為,聯立方程中,消去得,,則,又,解得或(舍去),直線方程為,直線過定點18、(1)(2)(3)答案見解析【解析】(1)聯立方程組求得交點的坐標,結合直線與直線垂直,求得直線的斜率為,利用直線的點斜式,即可求解;(2)先求得點到直線的距離為,由圓的的垂徑定理列出方程求得圓的半徑,即可求解;(3)若選①:設直線l的的斜率為,得到,結合題意列出方程,求得的值,即可求解;若選②,設所求圓的圓心為,半徑為,得到,利用圓的垂徑定理列出方程求得的值,即可求解.【小問1詳解】解:由直線和的交點為P,聯立方程組,解得,即,因為直線與直線垂直,所以直線的斜率為,所以過點且與直線垂直的直線方程為,即.【小問2詳解】解:因為點到直線的距離為,設所求圓的半徑為,由圓的的垂徑定理得,弦長,解得,所以所求圓的方程為.【小問3詳解】解:若選①:直線l過點,且與兩坐標軸的正半軸所圍成的三角形面積為,設直線l的的斜率為,可得直線的方程為,即,則直線與坐標軸的交點分別為,由,解得或,所以所求直線的方程為或.若選②,設所求圓的圓心為,半徑為,因為圓與x軸相切,可得,又由圓心到直線的距離為,利用圓的垂徑定理可得,即,解得,即圓心坐標為或,所以所求圓的方程為或.19、(1)(2)【解析】(1)根據與的關系,分和兩種情況,求出,再判斷是否合并;(2)利用錯位相減法求出數列的前n項和.【小問1詳解】,當時,,當時,,也滿足上式,數列的通項公式為:.【小問2詳解】由(1)可得,①②①②得,20、(1)(2)(3)【解析】(1)直接利用數列的遞推關系式,結合等差數列的定義,即可求得數列的通項公式;(2)化簡,結合裂項相消法求出數列的和;(3)利用分組法求得,結合,即可求得的最小值.【小問1詳解】解:因為各項都為正數的數列的前項和為,且滿足,當時,解得;當時,;兩式相減可得,整理得(常數),故數列是以2為首項,2為公差的等差數列;所以.【小問2詳解】解:由,可得,所以,所以.【小問3詳解】解:由,可得,所以當為偶數時,,因為,且為偶數,所以的最小值為48;當為奇數時,,不存在最小的值,故當為48時,滿足條件.21、(1)證明見解析;(2)證明見解析.【解析】(1)由直棱柱的性質可得,由勾股定理可得,由線面垂直判定定理即可得結果;(2)取的中點,連結和,通過線線平行得到面面,進而得結果.【詳解】(1)∵直三棱柱,∴面,∴,又∵,,,∴,∴,∵,∴面,∴(2)取的中點,連結和,∵,且,∴四邊形為平行四邊形,∴,面,∴面,∵,且,∴四邊形平行四邊形,∴,面,∴面,∵,∴面面,∴平面.【點睛】方法點睛:線面平行常見的證明方法:(1)通過構造相似三角形(三角形中位線),得到線線平行;(2)通過構造平行四邊形得到線線平行;(3)通過線面平行得到面面平行,再得線面平行.22、(1);(2)【解析】(1)根據圓心在弦的垂

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論