版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
北京市師范大學附屬中學2025屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.曲線上的點到直線的最短距離是()A. B.C. D.12.已知等比數(shù)列的前n項和為,且滿足公比0<q<1,<0,則下列說法不正確的是()A.一定單調(diào)遞減 B.一定單調(diào)遞增C.式子-≥0恒成立 D.可能滿足=,且k≠13.下列雙曲線中,焦點在軸上且漸近線方程為的是A. B.C. D.4.已知直線:與雙曲線的兩條漸近線分別相交于A、B兩點,若C為直線與y軸的交點,且,則k等于()A.4 B.6C. D.5.一直線過點,則此直線的傾斜角為()A.45° B.135°C.-45° D.-135°6.設函數(shù)是奇函數(shù)的導函數(shù),且,當時,,則不等式的解集為()A. B.C. D.7.已知等差數(shù)列滿足,則等于()A. B.C. D.8.記為等差數(shù)列的前n項和,有下列四個等式,甲:;乙:;丙:;?。海绻挥幸粋€等式不成立,則該等式為()A.甲 B.乙C.丙 D.丁9.如圖,在正方體ABCD-EFGH中,P在棱BC上,BP=x,平行于BD的直線l在正方形EFGH內(nèi),點E到直線l的距離記為d,記二面角為A-l-P為θ,已知初始狀態(tài)下x=0,d=0,則()A.當x增大時,θ先增大后減小 B.當x增大時,θ先減小后增大C.當d增大時,θ先增大后減小 D.當d增大時,θ先減小后增大10.已知函數(shù)的圖象是下列四個圖象之一,且其導函數(shù)的圖象如圖所示,則該函數(shù)的圖象是()A. B.C. D.11.若的解集是,則等于()A.-14 B.-6C.6 D.1412.瑞士著名數(shù)學家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,這條直線被后人稱為三角形的“歐拉線”.若滿足,頂點,且其“歐拉線”與圓相切,則:①.圓M上的點到原點的最大距離為②.圓M上存在三個點到直線的距離為③.若點在圓M上,則的最小值是④.若圓M與圓有公共點,則上述結論中正確的有()個A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.年月我國成功發(fā)射了第一顆人造地球衛(wèi)星“東方紅一號”,這顆衛(wèi)星的運行軌道是以地心(地球的中心)為一個焦點的橢圓.已知衛(wèi)星的近地點(離地面最近的點)距地面的高度約為,遠地點(離地面最遠的點)距地面的高度約為,且地心、近地點、遠地點三點在同一直線上,地球半徑約為,則衛(wèi)星運行軌道是上任意兩點間的距離的最大值為___________14.程大位《算法統(tǒng)宗》里有詩云“九百九十六斤棉,贈分八子做盤纏.次第每人多十七,要將第八數(shù)來言.務要分明依次弟,孝和休惹外人傳.”意為:996斤棉花,分別贈送給8個子女做旅費,從第一個開始,以后每人依次多17斤,直到第八個孩子為止.分配時一定要等級分明,使孝順子女的美德外傳,則第七個孩子分得斤數(shù)為___________.15.已知A,B為x,y正半軸上的動點,且,O為坐標原點,現(xiàn)以為邊長在第一象限做正方形,則的最大值為___________.16.已知分別是平面α,β,γ的法向量,則α,β,γ三個平面中互相垂直的有________對三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(…是自然對數(shù)的底數(shù)).(1)求的單調(diào)區(qū)間;(2)求函數(shù)的零點的個數(shù).18.(12分)已知直線,直線經(jīng)過點且與直線平行,設直線分別與x軸,y軸交于A,B兩點.(1)求點A和B的坐標;(2)若圓C經(jīng)過點A和B,且圓心C在直線上,求圓C的方程.19.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)在區(qū)間上的值域20.(12分)已知拋物線,直線與交于兩點且(為坐標原點)(1)求拋物線的方程;(2)設,若直線的傾斜角互補,求的值21.(12分)等差數(shù)列前n項和為,且(1)求通項公式;(2)記,求數(shù)列的前n項和22.(10分)已知函數(shù)(1)當時,求函數(shù)的極值;(2)當時,若恒成立,求實數(shù)a的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先求與平行且與相切的切線切點,再根據(jù)點到直線距離公式得結果.【詳解】設與平行的直線與相切,則切線斜率k=1,∵∴,由,得當時,即切點坐標為P(1,0),則點(1,0)到直線的距離就是線上的點到直線的最短距離,∴點(1,0)到直線的距離為:,∴曲線上的點到直線l:的距離的最小值為.故選:B2、D【解析】根據(jù)等比數(shù)列的通項公式,前n項和的意義,可逐項分析求解.【詳解】因為等比數(shù)列的前n項和為,且滿足公比0<q<1,<0,所以當時,由可得,故數(shù)列為增函數(shù),故B正確;由0<q<1,<0知,所以,故一定單調(diào)遞減,故A正確;因為當時,,,所以,即-,當時,,綜上,故C正確;若=,且k≠1,則,即,因為,故,故矛盾,所以D不正確.故選:D3、C【解析】焦點在軸上的是C和D,漸近線方程為,故選C考點:1.雙曲線的標準方程;2.雙曲線的簡單幾何性質(zhì)4、D【解析】先求出雙曲線的漸近線方程,然后分別與直線聯(lián)立,求出A、B兩點的橫坐標,再利用可求解.【詳解】由雙曲線方程可知其漸近線方程為:,當時,與聯(lián)立,得,同理得,由,且可知,所以有,解得.故選:D5、A【解析】根據(jù)斜率公式求得直線的斜率,得到,即可求解.【詳解】設直線的傾斜角為,由斜率公式,可得,即,因為,所以,即此直線的傾斜角為.故選:A.6、D【解析】設,則,分析可得為偶函數(shù)且,求出的導數(shù),分析可得在上為減函數(shù),進而分析可得上,,在上,,結合函數(shù)的奇偶性可得上,,在上,,又由即,則有或,據(jù)此分析可得答案【詳解】根據(jù)題意,設,則,若奇函數(shù),則,則有,即函數(shù)為偶函數(shù),又由,則,則,,又由當時,,則在上為減函數(shù),又由,則在上,,在上,,又由為偶函數(shù),則在上,,在上,,即,則有或,故或,即不等式的解集為;故選:D7、A【解析】利用等差中項求出的值,進而可求得的值.【詳解】因為得,因此,.故選:A.8、D【解析】分別假設甲、乙、丙、丁不成立,驗證得到答案【詳解】設數(shù)列的公差為,若甲不成立,則,由①,③可得,此時與②矛盾;A錯,若乙不成立,則,由①,③可得,此時;與②矛盾;B錯,若丙不成立,則,由①,③可得,此時;與②矛盾;C錯,若丁不成立,則,由①,③可得,此時;,D對,故選:D.9、C【解析】以F為坐標原點,F(xiàn)B,F(xiàn)G,F(xiàn)E所在直線為x軸,y軸,z軸建立空間直角坐標系,設正方體的棱長為2,則P(2,x,0),A(2,0,2),設直線l與EF,EH交于點M、N,,求得平面AMN的法向量為,平面PMN的法向量,由空間向量的夾角公式表示出,對于A,B選項,令d=0,則,由函數(shù)的單調(diào)性可判斷;對于C,D,當x=0時,則,令,利用導函數(shù)研究函數(shù)的單調(diào)性可判斷.【詳解】解:由題意,以F為坐標原點,F(xiàn)B,F(xiàn)G,F(xiàn)E所在直線為x軸,y軸,z軸建立空間直角坐標系如圖所示,設正方體的棱長為2,則P(2,x,0),A(2,0,2),設直線l與EF,EH交于點M、N,則,所以,,設平面AMN的法向量為,則,即,令,則,設平面PMN的法向量為,則,即,令,則,,對于A,B選項,令d=0,則,顯示函數(shù)在是為減函數(shù),即減小,則增大,故選項A,B錯誤;對于C,D,對于給定的,如圖,過作,垂足為,過作,垂足為,過作,垂足為,當在下方時,,設,則對于給定的,為定值,此時設二面角為,二面角為,則二面角為,且,故,而,故即,當時,為減函數(shù),故為增函數(shù),當時,為增函數(shù),故為減函數(shù),故先增后減,故D錯誤.當在上方時,,則對于給定的,為定值,則有二面角為,且,因,故為增函數(shù),故為減函數(shù),綜上,對于給定的,隨的增大而減少,故選:C.10、A【解析】利用導數(shù)與函數(shù)的單調(diào)性之間的關系及導數(shù)的幾何意義即得.【詳解】由函數(shù)f(x)的導函數(shù)y=f′(x)的圖像自左至右是先減后增,可知函數(shù)y=f(x)圖像的切線的斜率自左至右先減小后增大,且,在處的切線的斜率為0,故BCD錯誤,A正確.故選:A.11、A【解析】由一元二次不等式的解集,結合根與系數(shù)關系求參數(shù)a、b,即可得.【詳解】∵的解集為,∴-5和2為方程的兩根,∴有,解得,∴.故選:A.12、A【解析】由題意求出的垂直平分線可得△的歐拉線,再由圓心到直線的距離求得,得到圓的方程,求出圓心到原點的距離,加上半徑判斷A;求出圓心到直線的距離判斷B;再由的幾何意義,即圓上的點與定點連線的斜率判斷C;由兩個圓有公共點可得圓心距與兩個半徑之間的關系,求得的取值范圍判斷D【詳解】由題意,△的歐拉線即的垂直平分線,,,的中點坐標為,,則的垂直平分線方程為,即由“歐拉線”與圓相切,到直線的距離,,則圓的方程為:,圓心到原點的距離為,則圓上的點到原點的最大距離為,故①錯誤;圓心到直線的距離為,圓上存在三個點到直線的距離為,故②正確;的幾何意義:圓上的點與定點連線的斜率,設過與圓相切的直線方程為,即,由,解得,的最小值是,故③錯誤;的圓心坐標,半徑為,圓的的圓心坐標為,半徑為,要使圓與圓有公共點,則圓心距的范圍為,,,解得,故④錯誤故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意由a-c=439+6371,a+c=2384+6371,求得2a即可.【詳解】設橢圓的長半軸長為a,半焦距為c,由題意得:a-c=439+6371,a+c=2384+6371,兩式相加得:2a=15565,因為橢圓上任意兩點間的距離的最大值為長軸長2a,所以衛(wèi)星運行軌道是上任意兩點間的距離的最大值為,故答案為:1556514、167【解析】由題設知8個孩子分得斤數(shù)是公差為17的等差數(shù)列,設第一個孩子分得斤,應用等差數(shù)列前n項和公式求,進而由等差數(shù)列通項公式求即可.【詳解】由題意,設第一個孩子分得斤,則,所以,可得,故斤.故答案為:167.15、32【解析】建立平面直角坐標系,設出角度和邊長,表達出點坐標,進而表達出,利用三角函數(shù)換元,求出最大值.【詳解】如圖,過點D作DE⊥x軸于點E,過點C作CF⊥y軸于點F,設,(),則由三角形全等可知,設,,則,則,,則,令,,則,當時,取得最大值,最大值為32故答案為:3216、0【解析】計算每兩個向量的數(shù)量積,判斷該兩個向量是否垂直,可得答案.【詳解】因為,,.所以中任意兩個向量都不垂直,即α,β,γ中任意兩個平面都不垂直故答案為:0.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)當時,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)時函數(shù)沒有零點;或時函數(shù)有且只有一個零點;時,函數(shù)有兩個零點.【解析】(1)先對函數(shù)求導,然后分和兩種情況判斷導函數(shù)正負,求其單調(diào)區(qū)間;(2)由,得,構造函數(shù),然后利用導數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點情況,從而可得答案【詳解】(1)因為,所以,當時,恒成立,所以的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當時,令,得;令,得,所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)顯然0不是函數(shù)的零點,由,得.令,則.或時,,時,,所以在和上都是減函數(shù),在上是增函數(shù),時取極小值,又當時,.所以時,關于的方程無解,或時關于的方程只有一個解,時,關于的方程有兩個不同解.因此,時函數(shù)沒有零點,或時函數(shù)有且只有一個零點,時,函數(shù)有兩個零點.【點睛】關鍵點點睛:此題考查導數(shù)的應用,考查利用導數(shù)求函數(shù)的單調(diào)區(qū)間,考查利用導數(shù)判斷函數(shù)的零點,解題的關鍵是由,得,構造函數(shù),然后利用導數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點情況,考查數(shù)形結合的思想,屬于中檔題18、(1),;(2).【解析】(1)由直線平行及所過的點,應用點斜式寫出直線方程,進而求A、B坐標.(2)由(1)求出垂直平分線方程,并聯(lián)立直線求圓心坐標,即可求圓的半徑,進而寫出圓C的方程.【小問1詳解】由題設,的斜率為,又直線與直線平行且過,所以直線為,即,令,則;令,則.所以,.【小問2詳解】由(1)可得:垂直平分線為,即,聯(lián)立,可得,即,故圓的半徑為,所以圓C的方程為.19、(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)【解析】(1)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(2)根據(jù)函數(shù)的單調(diào)性求出函數(shù)的極值點,從而求出函數(shù)的最值即可【詳解】解:(1)由題意得,,令,得,令,得或,故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)易知,因為,所以(或由,可得),又當時,,所以函數(shù)在區(qū)間上的值域為【點睛】確定函數(shù)單調(diào)區(qū)間的步驟:第
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二年級下冊《買鮮花》課件版
- 2021屆浙江省寧波市九校高一上學期期末聯(lián)考數(shù)學試題(解析版)
- 人教版八年級上學期期中考試數(shù)學試卷-(含答案)
- 《風險投資方法》課件
- 2025年1月八省聯(lián)考高考綜合改革適應性測試-高三化學(內(nèi)蒙古卷)
- 天津市和平區(qū)2023-2024學年高三上學期期末質(zhì)量調(diào)查英語試卷
- 醫(yī)藥行業(yè)前臺接待工作心得
- 家政服務保姆照顧技能培訓總結
- 環(huán)保行業(yè)美工工作總結
- 貴州省安順市紫云縣2021-2022學年九年級上學期期末化學試題
- 智慧審計平臺項目匯報
- 湖北省天門市2022-2023學年三年級上學期語文期末試卷(含答案)
- 《建筑賦比興》一些筆記和摘錄(上)
- 【服裝企業(yè)比音勒芬服飾的財務問題分析(基于杜邦分析)9700字論文】
- 電氣工程及其自動化低壓電器中繼電器應用
- 實驗九(b)液體表面張力系數(shù)的測定(用毛細管法)
- 全球機場三字碼、四字碼
- 2023-2024學年重慶市兩江新區(qū)四上數(shù)學期末質(zhì)量檢測試題含答案
- 泌尿外科內(nèi)鏡診療技術質(zhì)量保障措施及應急預案
- M7.5漿砌塊石擋土墻砌筑施工方法
- 2022年度黑龍江省重點新產(chǎn)品名單
評論
0/150
提交評論