版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版高中數(shù)學選修2-2PAGEPAGE12.2直接證明與間接證明2.2.1綜合法和分析法一、基礎達標1.已知a,b,c∈R,那么下列命題中正確的是()A.若a>b,則ac2>bc2B.若eq\f(a,c)>eq\f(b,c),則a>bC.若a3>b3且ab<0,則eq\f(1,a)>eq\f(1,b)D.若a2>b2且ab>0,則eq\f(1,a)<eq\f(1,b)[答案]C[解析]對于A:若c=0,則A不成立,故A錯;對于B:若c<0,則B不成立,B錯;對于C:若a3>b3且ab<0,則eq\b\lc\{\rc\(\a\vs4\al\co1(a>0,b<0)),所以eq\f(1,a)>eq\f(1,b),故C對;對于D:若eq\b\lc\{\rc\(\a\vs4\al\co1(a<0,b<0)),則D不成立.2.已知A、B為△ABC的內角,則A>B是sinA>sinB的()A.充分不必要條件B.必要不充分條件C.充要條件D.即不充分也不必要條件[答案]C[解析]由正弦定理eq\f(a,sinA)=eq\f(b,sinB),又A、B為三角形的內角,∴sinA>0,sinB>0,∴sinA>sinB?2RsinA>2RsinB?a>b?A>B.3.已知直線l,m,平面α,β,且l⊥α,m?β,給出下列四個命題:①若α∥β,則l⊥m;②若l⊥m,則α∥β;③若α⊥β,則l⊥m;④若l∥m,則α⊥β.其中正確命題的個數(shù)是()A.1 B.2C.3 D.4[答案]B[解析]若l⊥α,m?β,α∥β,則l⊥β,所以l⊥m,①正確;若l⊥α,m?β,l⊥m,α與β可能相交,②不正確;若l⊥α,m?β,α⊥β,l與m可能平行或異面,③不正確;若l⊥α,m?β,l∥m,則m⊥α,所以α⊥β,④正確.4.設a,b∈R+,且a≠b,a+b=2,則必有()A.1≤ab≤eq\f(a2+b2,2) B.ab<1<eq\f(a2+b2,2)C.ab<eq\f(a2+b2,2)<1 D.eq\f(a2+b2,2)<ab<1[答案]B[解析]因為a≠b,故eq\f(a2+b2,2)>ab.又因為a+b=2>2eq\r(ab),故ab<1,eq\f(a2+b2,2)=eq\f(a+b2-2ab,2)=2-ab>1,即eq\f(a2+b2,2)>1>ab.5.要證明eq\r(3)+eq\r(7)<2eq\r(5),可選擇的方法有很多,最合理的應為________.[答案]分析法6.已知函數(shù)y=f(x)(x∈R),對函數(shù)y=g(x)(x∈I),定義g(x)關于f(x)的“對稱函數(shù)”為函數(shù)y=h(x)(x∈I),y=h(x)滿足:對任意x∈I,兩個點(x,h(x)),(x,g(x))關于點(x,f(x))對稱.若h(x)是g(x)=eq\r(4-x2)關于f(x)=3x+b的“對稱函數(shù)”,且h(x)>g(x)恒成立,則實數(shù)b的取值范圍是________.[答案](2eq\r(10),+∞)[解析]由已知得eq\f(hx+\r(4-x2),2)=3x+b,所以h(x)=6x+2b-eq\r(4-x2).h(x)>g(x)恒成立,即6x+2b-eq\r(4-x2)>eq\r(4-x2),3x+b>eq\r(4-x2)恒成立.在同一坐標系內,畫出直線y=3x+b及半圓y=eq\r(4-x2)(如圖所示),可得eq\f(b,\r(10))>2,即b>2eq\r(10),故[答案]為(2eq\r(10),+∞).7.在△ABC中,三邊a,b,c成等比數(shù)列,求證:acos2eq\f(C,2)+ccos2eq\f(A,2)≥eq\f(3,2)b.證明∵左邊=eq\f(a1+cosC,2)+eq\f(c1+cosA,2)=eq\f(1,2)(a+c)+eq\f(1,2)(acosC+ccosA)=eq\f(1,2)(a+c)+eq\f(1,2)(a·eq\f(a2+b2-c2,2ab)+c·eq\f(b2+c2-a2,2bc))=eq\f(1,2)(a+c)+eq\f(1,2)b≥eq\r(ac)+eq\f(b,2)=b+eq\f(b,2)=eq\f(3,2)b=右邊.∴acos2eq\f(C,2)+ccos2eq\f(A,2)≥eq\f(3,2)b.二、能力提升8.設0<x<1,則a=eq\r(2)x,b=1+x,c=eq\f(1,1-x)中最大的一個是()A.a B.bC.c D.不能確定[答案]C[解析]∵b-c=(1+x)-eq\f(1,1-x)=eq\f(1-x2-1,1-x)=-eq\f(x2,1-x)<0,∴b<c.又∵b=1+x>eq\r(2)x=a,∴a<b<c.9.已知a,b為非零實數(shù),則使不等式:eq\f(a,b)+eq\f(b,a)≤-2成立的一個充分不必要條件是()A.ab>0 B.ab<0C.a>0,b<0 D.a>0,b>0[答案]C[解析]∵eq\f(a,b)與eq\f(b,a)同號,由eq\f(a,b)+eq\f(b,a)≤-2,知eq\f(a,b)<0,eq\f(b,a)<0,即ab<0.又若ab<0,則eq\f(a,b)<0,eq\f(b,a)<0.∴eq\f(a,b)+eq\f(b,a)=-eq\b\lc\[\rc\](\a\vs4\al\co1(\b\lc\(\rc\)(\a\vs4\al\co1(-\f(a,b)))+\b\lc\(\rc\)(\a\vs4\al\co1(-\f(b,a)))))≤-2eq\r(\b\lc\(\rc\)(\a\vs4\al\co1(-\f(a,b)))·\b\lc\(\rc\)(\a\vs4\al\co1(-\f(b,a))))=-2,綜上,ab<0是eq\f(a,b)+eq\f(b,a)≤-2成立的充要條件,∴a>0,b<0是eq\f(a,b)+eq\f(b,a)≤-2成立的一個充分不必要條件.10.如圖所示,在直四棱柱A1B1C1D1-ABCD中,當?shù)酌嫠倪呅蜛BCD滿足條件________時,有A1C⊥B1D1(注:填上你認為正確的一個條件即可,不必考慮所有可能的情形).[答案]對角線互相垂直[解析]本題[答案]不唯一,要證A1C⊥B1D1,只需證B1D1垂直于A1C所在的平面A1CC1,因為該四棱柱為直四棱柱,所以B1D1⊥CC1,故只需證B1D1⊥A1C1即可.11.已知a>0,b>0,eq\f(1,b)-eq\f(1,a)>1.求證:eq\r(1+a)>eq\f(1,\r(1-b)).證明要證eq\r(1+a)>eq\f(1,\r(1-b))成立,只需證1+a>eq\f(1,1-b),只需證(1+a)(1-b)>1(1-b>0),即1-b+a-ab>1,∴a-b>ab,只需證:eq\f(a-b,ab)>1,即eq\f(1,b)-eq\f(1,a)>1.由已知a>0,eq\f(1,b)-eq\f(1,a)>1成立,∴eq\r(1+a)>eq\f(1,\r(1-b))成立.12.求證拋物線y2=2px(p>0),以過焦點的弦為直徑的圓必與x=-eq\f(p,2)相切.
證明如圖,作AA′、BB′垂直準線,取AB的中點M,作MM′垂直準線.要證明以AB為直徑的圓與準線相切,只需證|MM′|=eq\f(1,2)|AB|,由拋物線的定義:|AA′|=|AF|,|BB′|=|BF|,所以|AB|=|AA′|+|BB′|,因此只需證|MM′|=eq\f(1,2)(|AA′|+|BB′|)根據(jù)梯形的中位線定理可知上式是成立的.所以以過焦點的弦為直徑的圓必與x=-eq\f(p,2)相切.三、探究與創(chuàng)新13.設數(shù)列{an}的前n項和為Sn,已知a1=1,eq\f(2Sn,n)=an+1-eq\f(1,3)n2-n-eq\f(2,3),n∈N*.(1)求a2的值;(2)求數(shù)列{an}的通項公式;(3)證明:對一切正整數(shù)n,有eq\f(1,a1)+eq\f(1,a2)+…+eq\f(1,an)<eq\f(7,4).(1)解當n=1時,eq\f(2S1,1)=2a1=a2-eq\f(1,3)-1-eq\f(2,3)=2,解得a2=4.(2)解2Sn=nan+1-eq\f(1,3)n3-n2-eq\f(2,3)n①當n≥2時,2Sn-1=(n-1)an-eq\f(1,3)(n-1)3-(n-1)2-eq\f(2,3)(n-1)②①-②得2an=nan+1-(n-1)an-n2-n,整理得nan+1=(n+1)an+n(n+1),即eq\f(an+1,n+1)=eq\f(an,n)+1,eq\f(an+1,n+1)-eq\f(an,n)=1,當n=1時,eq\f(a2,2)-eq\f(a1,1)=2-1=1.所以數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(an,n)))是以1為首項,1為公差的等差數(shù)列.所以eq\f(an,n)=n,即an=n2.所以數(shù)列{an}的通項公式為an=n2,n∈N*.(3)證明因為eq\f(1,an)=eq\f(1,n2)<eq\f(1,n-1n)=eq\f(1,n-1)-eq\f(1,n)(n≥2),所以eq\f(1,a1)+eq\f(1,a2)+…+eq\f(1,an)=eq\f(1,12)+eq\f(1,22)+eq\f(1,32)+…+eq\f(1,n2)<1+eq\f(1,4)+e
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川省瀘州市瀘州高級中學校2024-2025學年七年級上學期1月期末歷史試卷(含答案)
- 湖北省部分重點中學2024-2025學年高三上學期第二次聯(lián)考(期末)地理試卷(含答案)
- 睡眠醫(yī)學中心:精準醫(yī)療引領健康睡眠未來趨勢 頭豹詞條報告系列
- 2025年度不動產房產證購房合同附帶車位使用權轉讓協(xié)議3篇
- 2024版多功能辦公設備采購合同6篇
- 2024荒田承包合同范本
- 福建省南平市建陽縣徐市中學高二數(shù)學理上學期期末試卷含解析
- 2025年EPS節(jié)能建筑項目施工安全管理合同3篇
- 2024薪資協(xié)議書-文化創(chuàng)意產業(yè)創(chuàng)作者模板2篇
- 2024版幕墻施工合同范文
- 人教版新教材高中生物選擇性必修一全冊重點知識點歸納總結(穩(wěn)態(tài)與調節(jié))
- 虹膜睫狀體炎實用全套PPT
- 事業(yè)單位公開招聘面試考官測試題及答案
- 質量員培訓講座課件
- 廠區(qū)綠化養(yǎng)護及方案
- 旅游者對鼓浪嶼旅游產品的滿意度調查問卷
- (完整word版)人員密集場所消防安全管理GA654-2006
- 初二(6)班-家長會
- 光伏發(fā)電項目并網調試方案
- 高中化學競賽題--成鍵理論
- 康復中心組織結構圖
評論
0/150
提交評論