期中檢測卷-2024-2025學(xué)年北師大版數(shù)學(xué)九年級上冊_第1頁
期中檢測卷-2024-2025學(xué)年北師大版數(shù)學(xué)九年級上冊_第2頁
期中檢測卷-2024-2025學(xué)年北師大版數(shù)學(xué)九年級上冊_第3頁
期中檢測卷-2024-2025學(xué)年北師大版數(shù)學(xué)九年級上冊_第4頁
期中檢測卷-2024-2025學(xué)年北師大版數(shù)學(xué)九年級上冊_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

期中檢測卷-2024-2025學(xué)年數(shù)學(xué)九年級上冊北師大版一.選擇題(共8小題)1.(2024秋?浙江期中)任意拋擲一枚均勻的骰子兩次,記兩次朝上的點數(shù)的和為m,則下列m的值中,概率最大的是()A.5 B.6 C.7 D.82.(2024秋?陵川縣月考)下列是關(guān)于x的一元二次方程的是()A. B.x(x+6)=0 C.a(chǎn)2x﹣5=0 D.4x﹣x3=23.(2024春?貴州期末)青田林業(yè)局考查一種樹苗移植的成活率,將調(diào)查數(shù)據(jù)繪制成統(tǒng)計圖,則可估計這種樹苗移植成活的概率約是()A.0.95 B.0.90 C.0.85 D.0.804.(2024秋?南山區(qū)校級月考)方程x2+2x+1=0的根的情況是()A.有兩個相等實數(shù)根 B.有兩個不相等實數(shù)根 C.有一個實數(shù)根 D.無實數(shù)根5.(2024秋?歷城區(qū)校級月考)為創(chuàng)建全國文明城市,某市2019年投入城市文化打造費用2500萬元,預(yù)計2021年投入3600萬元.設(shè)這兩年投入城市文化打造費用的年平均增長百分率為x,則下列方程正確的是()A.2500x2=3600 B.2500(1+x)=3600 C.2500(1+x)2=3600 D.2500(1+x)+2500(1+x)2=36006.(2024春?北海期末)下列說法中,錯誤的是()A.平行四邊形的對角線相等 B.平行四邊形的對角相等 C.有一個角是90°的菱形是正方形 D.矩形的對角線相等且互相平分7.(2023秋?萊州市期末)如圖,矩形ABCD中,AB=1,E是AC的中點,∠AED=120°,則AD長為()A. B.2 C. D.38.(2024?渝中區(qū)校級二模)如圖,在正方形ABCD中,點E、點F分別是AB和BC邊的中點,連接DE、AF交于點P,連接CP和DF,若∠BCP=α,則∠CPF的度數(shù)為()A. B. C.90°﹣α D.90°﹣2α二.填空題(共8小題)9.(2024秋?義烏市期中)在一個不透明的袋中裝有40個紅、黃、藍三種顏色的球,除顏色外其他都相同,佳佳和琪琪通過多次摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在0.2左右,則袋中紅球大約有.10.(2024秋?迎澤區(qū)校級月考)足球是一項非常古老的運動,最早起源于中國,是全球體育界極具影響力的單項體育運動之一,現(xiàn)從一批足球中隨機抽檢部分足球的質(zhì)量,統(tǒng)計結(jié)果如下表:抽取的足球數(shù)n/個100200400600100015002000優(yōu)等品的頻數(shù)m/個9319238056193814131878優(yōu)等品的頻率0.930.960.950.9350.9380.9420.939據(jù)此推測,從這批足球中隨機抽取一個足球是優(yōu)等品的概率約是.(結(jié)果精確到0.01)11.(2024秋?襄汾縣校級月考)若關(guān)于x的方程3x2﹣2x﹣1=0的一個根是a,則代數(shù)式6a2﹣4a+10的值為.12.(2024秋?北碚區(qū)校級期中)為改善農(nóng)民生活質(zhì)量,落實惠農(nóng)政策,我國農(nóng)村燃氣普及率逐年上升.某地區(qū)農(nóng)村2022年新開通燃氣20萬戶,2024年新開通燃氣39.2萬戶,則該地區(qū)農(nóng)村這兩年新開通燃氣的年平均增長率是.13.(2024秋?江都區(qū)月考)如圖,在矩形ABCD中,AB=16cm,BC=6cm,點P從點A出發(fā)沿AB以3cm/s的速度向點B移動,一直到達點B為止;同時,點Q從點C出發(fā)沿邊CD以2cm/s的速度向點D移動.設(shè)運動時間為t,當(dāng)PQ=10cm時,時間t=.14.(2024?青秀區(qū)校級模擬)如圖,將兩條寬度都是為2的紙條重疊在一起,使∠ABC=45°,則四邊形ABCD的面積為.15.(2024?新城區(qū)校級模擬)如圖,在菱形ABCD中,AB=10,AC=12,過點D作DE⊥BA,交BA的延長線于點E,則線段DE的長為.16.(2024秋?雁塔區(qū)校級月考)如圖,矩形ABCD的對角線相交于點O作OG⊥AC,交AB于點G,連接CG,若∠BOG=16°,則∠BCG的度數(shù)是.三.解答題(共8小題)17.(2024秋?光明區(qū)月考)解方程:(1)x2﹣4x+1=0;(2)3x2+5x﹣2=0.18.(2024?讓胡路區(qū)校級模擬)已知關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實數(shù)根x1,x2.(1)求k的取值范圍;(2)若x1+x2+2x1x2=1,求k的值.19.(2024?蓮湖區(qū)校級一模)人工智能是數(shù)字經(jīng)濟高質(zhì)量發(fā)展的引擎,也是新一輪科技革命和產(chǎn)業(yè)變革的重要驅(qū)動.人工智能市場分為決策類人工智能,人工智能機器人,語音類人工智能,視覺類人工智能四大類型,將四個類型的圖標(biāo)依次制成A,B,C,D四張卡片(卡片背面完全相同),將四張卡片背面朝上洗勻放置在桌面上.(1)隨機抽取一張,抽到?jīng)Q策類人工智能的卡片的概率為;(2)從中隨機抽取一張,記錄卡片的內(nèi)容后放回洗勻,再隨機抽取一張,請用列表或畫樹狀圖的方法求抽取到的兩張卡片內(nèi)容一致的概率.20.(2024秋?鼓樓區(qū)校級月考)某地今年種植12萬千克的蓮藕,計劃在甲、乙兩店銷售,其中在乙店的銷售量為x(萬千克),銷售情況如下表:甲店乙店利潤(萬元/萬千克)2﹣0.2x+4.2(1)若在甲店銷售蓮藕2萬千克,求銷售完這批蓮藕的獲利總數(shù);(2)若該地銷售完所有蓮藕后,共獲利28.8萬元,求x的值.21.(2024秋?東明縣校級月考)如圖,在△ABC中,AB=AC,D是BC邊上的一點,E是AD的中點,過點A作BC的平行線交于BE的延長線于點F,且AF=DC,連接CF.(1)求證:D是BC的中點;(2)求證:四邊形ADCF為矩形.22.(2024春?敘州區(qū)期末)如圖,ON為∠AOB中的一條射線,點P在邊OA上,PH⊥OB于H,交ON于點Q,PM∥OB交ON于點M,MD⊥OB于點D,QR∥OB交MD于點R,連接PR交QM于點S.(1)求證:四邊形PQRM為矩形;(2)若OP=PR,試探究∠AOB與∠BON的數(shù)量關(guān)系,并說明理由.23.(2024春?韓城市期末)如圖,已知四邊形ABCD和CEFG均是正方形,點K在BC上,延長CD到點H,使DH=BK=CE,連接AK,KF,HF,AH.(1)求證:AK=AH;(2)求證:四邊形AKFH是正方形;(3)若四邊形AKFH的面積為10,CE=1,求點A,E之間的距離.24.(2024春?易門縣期末)如圖,已知正方形ABCD中,E為CB延長線上一點,且BE=AB,M、N分別為AE、BC的中點,連DE交AB于O,MN交,ED于H點.(1)求證:AO=BO;(2)求證:∠HEB=∠HNB;(3)過A作AP⊥ED于P點,連BP,則的值.

期中檢測卷-2024-2025學(xué)年數(shù)學(xué)九年級上冊北師大版參考答案與試題解析一.選擇題(共8小題)1.(2024秋?浙江期中)任意拋擲一枚均勻的骰子兩次,記兩次朝上的點數(shù)的和為m,則下列m的值中,概率最大的是()A.5 B.6 C.7 D.8【解答】解:∵5<6<7<8,∴最大的數(shù)是:8.故選:D.2.(2024秋?陵川縣月考)下列是關(guān)于x的一元二次方程的是()A. B.x(x+6)=0 C.a(chǎn)2x﹣5=0 D.4x﹣x3=2【解答】解:A.的分母含未知數(shù),故不是一元二次方程,不符合題意;B.x(x+6)=0是一元二次方程,符合題意;C.a(chǎn)2x﹣5=0未知數(shù)x的次數(shù)是1,故不是一元二次方程,不符合題意;D.4x﹣x3=2中未知數(shù)的最高次項的次數(shù)是3,故不是一元二次方程,不符合題意,故選:B.3.(2024春?貴州期末)青田林業(yè)局考查一種樹苗移植的成活率,將調(diào)查數(shù)據(jù)繪制成統(tǒng)計圖,則可估計這種樹苗移植成活的概率約是()A.0.95 B.0.90 C.0.85 D.0.80【解答】解:這種樹苗成活的頻率穩(wěn)定在0.9,成活的概率估計值約是0.9.故選:B.4.(2024秋?南山區(qū)校級月考)方程x2+2x+1=0的根的情況是()A.有兩個相等實數(shù)根 B.有兩個不相等實數(shù)根 C.有一個實數(shù)根 D.無實數(shù)根【解答】解:∵方程x2+2x+1=0,∴a=1,b=2,c=1,∴Δ=b2﹣4ac=22﹣4×1×1=0,∴方程x2+2x+1=0有兩個相等實數(shù)根,故選:A.5.(2024秋?歷城區(qū)校級月考)為創(chuàng)建全國文明城市,某市2019年投入城市文化打造費用2500萬元,預(yù)計2021年投入3600萬元.設(shè)這兩年投入城市文化打造費用的年平均增長百分率為x,則下列方程正確的是()A.2500x2=3600 B.2500(1+x)=3600 C.2500(1+x)2=3600 D.2500(1+x)+2500(1+x)2=3600【解答】解:由題意可知:2021年的投入為2500(1+x)2,∵2021年投入3600萬元,∴2500(1+x)2=3600.故選:C.6.(2024春?北海期末)下列說法中,錯誤的是()A.平行四邊形的對角線相等 B.平行四邊形的對角相等 C.有一個角是90°的菱形是正方形 D.矩形的對角線相等且互相平分【解答】解:A、平行四邊形的對角線互相平分,故本選項的說法錯誤,符合題意;B、平行四邊形的對角相等,故本選項的說法正確,不符合題意;C、有一個角是90°的菱形是正方形,故本選項的說法正確,不符合題意;D、矩形的對角線相等且互相平分,故本選項的說法正確,不符合題意;故選:A.7.(2023秋?萊州市期末)如圖,矩形ABCD中,AB=1,E是AC的中點,∠AED=120°,則AD長為()A. B.2 C. D.3【解答】解:∵四邊形ABCD是矩形,∴AB=CD=1,∠ADC=90°,∵E是AC的中點,∴AE=ED=EC,∵∠AED=120°,∴∠DAC=30°,∴AD=CD=,故選:C.8.(2024?渝中區(qū)校級二模)如圖,在正方形ABCD中,點E、點F分別是AB和BC邊的中點,連接DE、AF交于點P,連接CP和DF,若∠BCP=α,則∠CPF的度數(shù)為()A. B. C.90°﹣α D.90°﹣2α【解答】解:延長AF,DC交于G,如圖:∵四邊形ABCD是正方形,∴AB=AD=BC=CD,∠DAE=∠B=90°,∵E,F(xiàn)是AB,BC的中點,∴AE=AB=BC=BF,∴△DAE≌△ABF(SAS),∴∠ADE=∠BAF,∵∠ADE+∠AED=90°,∴∠BAF+∠AED=90°,∴∠APE=90°=∠DPG,∵∠B=∠GCF=90°,BF=CF,∠AFB=∠GFC,∴△ABF≌△GCF(ASA),∴AB=CG,∴CG=CD,∴CP為Rt△DPG斜邊上的中線,∴CP=DG=CG,∴∠CPF=∠G,∵∠CPF+∠G+∠PCG=180°,∴∠CPF+∠CPF+(α+90°)=180°,∴∠CPF=45°﹣;故選:A.二.填空題(共8小題)9.(2024秋?義烏市期中)在一個不透明的袋中裝有40個紅、黃、藍三種顏色的球,除顏色外其他都相同,佳佳和琪琪通過多次摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在0.2左右,則袋中紅球大約有8個.【解答】解:設(shè)袋中紅球大約有x個,由題意知:=0.2,解得x=8,故答案為:8個.10.(2024秋?迎澤區(qū)校級月考)足球是一項非常古老的運動,最早起源于中國,是全球體育界極具影響力的單項體育運動之一,現(xiàn)從一批足球中隨機抽檢部分足球的質(zhì)量,統(tǒng)計結(jié)果如下表:抽取的足球數(shù)n/個100200400600100015002000優(yōu)等品的頻數(shù)m/個9319238056193814131878優(yōu)等品的頻率0.930.960.950.9350.9380.9420.939據(jù)此推測,從這批足球中隨機抽取一個足球是優(yōu)等品的概率約是0.94.(結(jié)果精確到0.01)【解答】解:從這批足球中,任意抽取一只足球是優(yōu)等品的概率的估計值是0.94.故答案為:0.94.11.(2024秋?襄汾縣校級月考)若關(guān)于x的方程3x2﹣2x﹣1=0的一個根是a,則代數(shù)式6a2﹣4a+10的值為12.【解答】解:∵關(guān)于x的方程3x2﹣2x﹣1=0的一個根是a,∴3a2﹣2a﹣1=0,∴3a2﹣2a=1,∴6a2﹣4a+10=2(3a2﹣2a)+10=2×1+10=12,故答案為:12.12.(2024秋?北碚區(qū)校級期中)為改善農(nóng)民生活質(zhì)量,落實惠農(nóng)政策,我國農(nóng)村燃氣普及率逐年上升.某地區(qū)農(nóng)村2022年新開通燃氣20萬戶,2024年新開通燃氣39.2萬戶,則該地區(qū)農(nóng)村這兩年新開通燃氣的年平均增長率是40%.【解答】解:設(shè)該地區(qū)農(nóng)村這兩年新開通燃氣的年平均增長率是x,由題意得:20(1+x)2=39.2,解得:x1=0.4=40%,x2=﹣2.4(不符合題意,舍去),即該地區(qū)農(nóng)村這兩年新開通燃氣的年平均增長率是40%,故答案為:40%.13.(2024秋?江都區(qū)月考)如圖,在矩形ABCD中,AB=16cm,BC=6cm,點P從點A出發(fā)沿AB以3cm/s的速度向點B移動,一直到達點B為止;同時,點Q從點C出發(fā)沿邊CD以2cm/s的速度向點D移動.設(shè)運動時間為t,當(dāng)PQ=10cm時,時間t=或.【解答】解:當(dāng)運動時間為t時,AP=3tcm,CQ=2tcm,過點P作PH⊥CD于點H,∴四邊形APHD是矩形,∵四邊形ABCD是矩形,∴AB∥CD,CD=AB=16cm,∠A=∠D=90°,∴PH=BC=6cm,∵四邊形APHD是矩形,∴DH=AP=3tcm,∴HQ=CD﹣AP﹣CQ=16﹣5t(cm).∵PH2+HQ2=PQ2,∴(16﹣5t)2+62=102,解得,.故答案為:或.14.(2024?青秀區(qū)校級模擬)如圖,將兩條寬度都是為2的紙條重疊在一起,使∠ABC=45°,則四邊形ABCD的面積為4.【解答】解:如圖,過點A作AE⊥BC于點E,AF⊥CD于點F.則AE=AF=2.∵紙條的對邊平行,即AB∥CD,AD∥BC,∴四邊形ABCD是平行四邊形,∵兩張紙條的寬度都是2,∴S四邊形ABCD=BC×2=CD×2,∴BC=CD,∴平行四邊形ABCD是菱形,即四邊形ABCD是菱形.∴四邊形ABCD的面積為2×2×=4.故答案為:4.15.(2024?新城區(qū)校級模擬)如圖,在菱形ABCD中,AB=10,AC=12,過點D作DE⊥BA,交BA的延長線于點E,則線段DE的長為.【解答】解:如圖,設(shè)AC與BD的交點為O,∵四邊形ABCD是菱形,∴AO=OC=6,BO=DO,AC⊥BD,∴BO===8,∴BD=16,∵S菱形ABCD=AB?DE=AC?BD,∴DE==,故答案為:.16.(2024秋?雁塔區(qū)校級月考)如圖,矩形ABCD的對角線相交于點O作OG⊥AC,交AB于點G,連接CG,若∠BOG=16°,則∠BCG的度數(shù)是16°.【解答】解:∵四邊形ABCD是矩形,∴AC=BD,AB∥DC,DO=OA=OB=OC,∴∠OCB=∠OBC,∵OG⊥AC,∴OG是AC的垂直平分線,∴AG=CG,∴∠OAG=∠OCG,∵AB∥DC,∴∠OAG=∠OCG,∵∠BOG=16°,∠COG=90°,∴∠COB=74°,∵∠OCB=∠OBC,∴∠OCB=∠OBC=,∵∠BCD=90°,∴∠OCD=∠BCD﹣∠OCB=90°﹣53°=37°,∴∠OCD=∠OAG=∠OCG=37°,∴∠BCG=∠OCB﹣∠OCG=53°﹣37°=16°,故答案為:16°.三.解答題(共8小題)17.(2024秋?光明區(qū)月考)解方程:(1)x2﹣4x+1=0;(2)3x2+5x﹣2=0.【解答】解:(1)x2﹣4x+1=0,x2﹣4x=﹣1,(x﹣2)2=3,∴,解得,;(2)3x2+5x﹣2=0,(3x﹣1)(x+2)=0,∴3x﹣1=0或x+2=0,解得,x2=﹣2.18.(2024?讓胡路區(qū)校級模擬)已知關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實數(shù)根x1,x2.(1)求k的取值范圍;(2)若x1+x2+2x1x2=1,求k的值.【解答】解:(1)∵關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實數(shù)根x1,x2,∴Δ=(2k+1)2﹣4(k2+1)=4k﹣3>0,∴k;(2)根據(jù)根與系數(shù)的關(guān)系,可得x1+x2=﹣2k﹣1,x1x2=k2+1,又∵x1+x2+2x1x2=1,∴﹣2k﹣1+2(k2+1)=1,解得k=0或k=1,由(1)得k,∴k=1.19.(2024?蓮湖區(qū)校級一模)人工智能是數(shù)字經(jīng)濟高質(zhì)量發(fā)展的引擎,也是新一輪科技革命和產(chǎn)業(yè)變革的重要驅(qū)動.人工智能市場分為決策類人工智能,人工智能機器人,語音類人工智能,視覺類人工智能四大類型,將四個類型的圖標(biāo)依次制成A,B,C,D四張卡片(卡片背面完全相同),將四張卡片背面朝上洗勻放置在桌面上.(1)隨機抽取一張,抽到?jīng)Q策類人工智能的卡片的概率為;(2)從中隨機抽取一張,記錄卡片的內(nèi)容后放回洗勻,再隨機抽取一張,請用列表或畫樹狀圖的方法求抽取到的兩張卡片內(nèi)容一致的概率.【解答】解:(1)∵共有4張卡片,∴從中隨機抽取一張,抽到?jīng)Q策類人工智能的卡片的概率為;故答案為:;(2)解:根據(jù)題意畫圖如下:共有16種等可能的結(jié)果數(shù),其中抽取到的兩張卡片內(nèi)容一致的結(jié)果數(shù)為4,所以抽取到的兩張卡片內(nèi)容一致的概率為.20.(2024秋?鼓樓區(qū)校級月考)某地今年種植12萬千克的蓮藕,計劃在甲、乙兩店銷售,其中在乙店的銷售量為x(萬千克),銷售情況如下表:甲店乙店利潤(萬元/萬千克)2﹣0.2x+4.2(1)若在甲店銷售蓮藕2萬千克,求銷售完這批蓮藕的獲利總數(shù);(2)若該地銷售完所有蓮藕后,共獲利28.8萬元,求x的值.【解答】解:(1)依題2×2+[﹣0.2×(12﹣2)+4.2]×(12﹣2)=66(萬元),∴銷售完這批蓮藕的獲利為66萬元;(2)2×(12﹣x)+(﹣0.2x+4.2)x=28.8,則x2﹣11x+24=0,解得x1=3,x2=8,∴共獲利28.8萬元,x的值為3或8.21.(2024秋?東明縣校級月考)如圖,在△ABC中,AB=AC,D是BC邊上的一點,E是AD的中點,過點A作BC的平行線交于BE的延長線于點F,且AF=DC,連接CF.(1)求證:D是BC的中點;(2)求證:四邊形ADCF為矩形.【解答】證明:(1)∵E是AD的中點,∴AE=DE∵AF//BC,∴∠FAE=∠BDE,∠AFE=∠DBE∴△AFE≌△DBE,∴AF=BD又∵AF=DC,∴BD=DC,即D是BC的中點;(2)∵AF=DC,AF//DC,∴四邊形ADCF是平行四邊形∵AB=AC,BD=DC,∴AD⊥BC即∠ADC=90°∴四邊形ADCF是矩形.22.(2024春?敘州區(qū)期末)如圖,ON為∠AOB中的一條射線,點P在邊OA上,PH⊥OB于H,交ON于點Q,PM∥OB交ON于點M,MD⊥OB于點D,QR∥OB交MD于點R,連接PR交QM于點S.(1)求證:四邊形PQRM為矩形;(2)若OP=PR,試探究∠AOB與∠BON的數(shù)量關(guān)系,并說明理由.【解答】(1)證明:∵PH⊥OB,MD⊥OB,∴PH∥MD,∵PM∥OB,QR∥OB,∴PM∥QR,∴四邊形PQRM是平行四邊形,∵PH⊥OB,∴∠PHO=90°,∵PM∥OB,∴∠MPQ=∠PHO=90°,∴四邊形PQRM為矩形;(2)解:∠AOB=3∠BON.理由如下:∵四邊形PQRM為矩形,∴PS=SR=SQ=PR,∴∠SQR=∠SRQ,又∵OP=PR,∴OP=PS,∴∠POS=∠PSO,∵QR∥OB,∴∠SQR=∠BON,在△SQR中,∠PSO=∠SQR+∠SRQ=2∠SQR=2∠BON,∴∠POS=2∠BON,∴∠AOB=∠POS+∠BON=2∠BON+∠BON=3∠BON,即∠AOB=3∠BON.23.(2024春?韓城市期末)如圖,已知四邊形ABCD和CEFG均是正方形,點K在BC上,延長CD到點H,使DH=BK=CE,連接AK,KF,HF,AH.(1)求證:AK=AH;(2)求證:四邊形AKFH是正方形;(3)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論