新疆維吾爾自治區(qū)阿克蘇地區(qū)沙雅縣2024-2025學(xué)年九上數(shù)學(xué)開學(xué)經(jīng)典模擬試題【含答案】_第1頁
新疆維吾爾自治區(qū)阿克蘇地區(qū)沙雅縣2024-2025學(xué)年九上數(shù)學(xué)開學(xué)經(jīng)典模擬試題【含答案】_第2頁
新疆維吾爾自治區(qū)阿克蘇地區(qū)沙雅縣2024-2025學(xué)年九上數(shù)學(xué)開學(xué)經(jīng)典模擬試題【含答案】_第3頁
新疆維吾爾自治區(qū)阿克蘇地區(qū)沙雅縣2024-2025學(xué)年九上數(shù)學(xué)開學(xué)經(jīng)典模擬試題【含答案】_第4頁
新疆維吾爾自治區(qū)阿克蘇地區(qū)沙雅縣2024-2025學(xué)年九上數(shù)學(xué)開學(xué)經(jīng)典模擬試題【含答案】_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共7頁新疆維吾爾自治區(qū)阿克蘇地區(qū)沙雅縣2024-2025學(xué)年九上數(shù)學(xué)開學(xué)經(jīng)典模擬試題題號一二三四五總分得分批閱人A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點E,∠ABC的平分線交AD于點F,若BF=12,AB=10,則AE的長為()A.13 B.14 C.15 D.162、(4分)有一個正五邊形和一個正方形邊長相等,如圖放置,則的值是()A. B. C. D.3、(4分)如圖,將△ABC繞點B逆時針旋轉(zhuǎn)α,得到△EBD,若點A恰好在ED的延長線上,則∠CAD的度數(shù)為()A.90°﹣α B.α C.180°﹣α D.2α4、(4分)如圖,梯形ABCD中,AD∥BC,AD=CD,BC=AC,∠BAD=110°,則∠D=()A.140° B.120° C.110° D.100°5、(4分)在函數(shù)中的取值范圍是()A. B. C. D.6、(4分)如圖,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.若CD=3,BC+AB=16,則△ABC的面積為()A.16 B.18 C.24 D.327、(4分)在下列條件中,不能確定四邊形ABCD為平行四邊形的是().A.∠A=∠C,∠B=∠D B.∠A+∠B=180°,∠C+∠D=180°C.∠A+∠B=180°,∠B+∠C=180° D.∠A=∠B=∠C=90°8、(4分)如圖所示,E、F分別是□ABCD的邊AB、CD上的點,AF與DE相交于點P,BF與CE相交于點Q,若S△APD=2cm2,S△BQC=4cm2,則陰影部分的面積為()A.6cm2 B.8cm2 C.10cm2 D.12cm2二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)如圖,在平面直角坐標(biāo)系中有兩點A(6,0),B(0,3),如果點C在x軸上(C與A不重合),當(dāng)點C的坐標(biāo)為時,△BOC與△AOB相似.10、(4分)如圖,在△ABC中,點D、E分別在AB、AC上,∠ADE=∠C,如果AE=4cm,△ACE的面積是4cm2,四邊形BCED的面積是5cm2,那么AB的長是.11、(4分)關(guān)于x的一元二次方程x2+4x+2k﹣1=0有兩個實數(shù)根,則k的取值范圍是_____.12、(4分)如圖,∠DAB=∠CAE,請補充一個條件:________________,使△ABC∽△ADE.13、(4分)寫出一個圖象經(jīng)過點(1,﹣2)的函數(shù)的表達式:_____.三、解答題(本大題共5個小題,共48分)14、(12分)如圖,將一矩形紙片OABC放在平面直角坐標(biāo)系中,O(1,1),A(6,1),C(1,3),動點F從點O出發(fā)以每秒1個單位長度的速度沿OC向終點C運動,運動秒時,動點E從點A出發(fā)以相同的速度沿AO向終點O運動,當(dāng)點E、F其中一點到達終點時,另一點也停止運動設(shè)點E的運動時間為t:(秒)(1)OE=,OF=(用含t的代數(shù)式表示)(2)當(dāng)t=1時,將△OEF沿EF翻折,點O恰好落在CB邊上的點D處①求點D的坐標(biāo)及直線DE的解析式;②點M是射線DB上的任意一點,過點M作直線DE的平行線,與x軸交于N點,設(shè)直線MN的解析式為y=kx+b,當(dāng)點M與點B不重合時,S為△MBN的面積,當(dāng)點M與點B重合時,S=1.求S與b之間的函數(shù)關(guān)系式,并求出自變量b的取值范圍.15、(8分)如圖、,在平行四邊形中,、的角平分線、分別與線段兩側(cè)的延長線(或線段)相交與、,與相交于點.(1)在圖中,求證:,.(2)在圖中,仍有(1)中的,成立,請解答下面問題:①若,,,求和的長;②是否能給平行四邊形的邊和角各添加一個條件,使得點恰好落在邊上且為等腰三角形?若能,請寫出所給條件;若不能,請說明理由.16、(8分)(1)分解因式:a3-2a2b+ab2;(2)解方程:x2+12x+27=017、(10分)如圖,在平行四邊形AECF中,B,D是直線EF上的兩點,BE=DF,連接AB,BC,AD,DC.求證:四邊形ABCD是平行四邊形.18、(10分)計算:+(﹣1)2﹣B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)若分解因式可分解為,則=______。20、(4分)已知菱形的邊長為4,,如果點是菱形內(nèi)一點,且,那么的長為___________.21、(4分)若x+y﹣1=0,則x2+xy+y2﹣2=_____.22、(4分)直角三角形的兩邊長分別為5和4,則該三角形的第三邊的長為_____.23、(4分)已知關(guān)于的方程的一個解為1,則它的另一個解是__________.二、解答題(本大題共3個小題,共30分)24、(8分)已知,在正方形中,點、在上,且.(1)求證:四邊形是菱形;(2)若正方形的邊長為,求菱形的面積.25、(10分)如圖,矩形ABCD的邊BC在x軸上,點A(a,4)和D分別在反比函數(shù)y=-12x和y=mx(m>(1)當(dāng)AB=BC時,求m的值。(2)連結(jié)OA,OD.當(dāng)OD平方∠AOC時,求△AOD的周長.26、(12分)如圖,在平行四邊形中,,是中點,在延長線上,連接相交于點.(1)若,求平行四邊形的面積;(2)若,求證:.

參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、D【解析】

先證明四邊形ABEF是平行四邊形,再證明鄰邊相等即可得出四邊形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的長.【詳解】如圖所示:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分線交BC于點E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四邊形ABEF是平行四邊形,∵AB=AF,∴四邊形ABEF是菱形,∴AE⊥BF,OA=OE,OB=OF=BF=6,∴OA==8,∴AE=2OA=16.故選D.本題考查平行四邊形的性質(zhì)與判定、等腰三角形的判定、菱形的判定和性質(zhì)、勾股定理等知識;熟練掌握平行四邊形的性質(zhì),證明四邊形ABEF是菱形是解決問題的關(guān)鍵.2、B【解析】

∠1的度數(shù)是正五邊形的內(nèi)角與正方形的內(nèi)角的度數(shù)的差,根據(jù)多邊形的內(nèi)角和定理求得角的度數(shù),進而求解.【詳解】解:正五邊形的內(nèi)角的度數(shù)是正方形的內(nèi)角是90°,

則∠1=108°-90°=18°.

故選:B.本題考查了多邊形的內(nèi)角和定理,求得正五邊形的內(nèi)角的度數(shù)是關(guān)鍵.3、C【解析】分析:根據(jù)旋轉(zhuǎn)的性質(zhì)和四邊形的內(nèi)角和是360°,可以求得∠CAD的度數(shù),本題得以解決.詳解:由題意可得,∠CBD=α,∠ACB=∠EDB,∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°,∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°?α,故選C.點睛:本題考查旋轉(zhuǎn)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.4、D【解析】

根據(jù)平行線的性質(zhì)求出∠B,根據(jù)等腰三角形性質(zhì)求出∠CAB,推出∠DAC,求出∠DCA,根據(jù)三角形的內(nèi)角和定理求出即可.【詳解】解:∵AD∥BC,

∴∠B+∠BAD=180°,

∵∠BAD=110°

∴∠B=70°,

∵AC=BC,

∴∠B=∠BAC=70°,

∴∠DAC=110°-70°=40°,

∵AD=DC,

∴∠DAC=∠DCA=40°,

∴∠D=180°-∠DAC-∠DCA=100°,

故選:D.本題考查了梯形,平行線的性質(zhì),等腰三角形的性質(zhì),三角形的內(nèi)角和定理等知識點的理解和掌握,能熟練地運用性質(zhì)進行計算是解此題的關(guān)鍵.5、C【解析】

根據(jù)分母不等于0列式計算即可得解.【詳解】根據(jù)題意得,,

解得.

故選C.本題考查了函數(shù)自變量的范圍,一般從三個方面考慮:

(1)當(dāng)函數(shù)表達式是整式時,自變量可取全體實數(shù);

(2)當(dāng)函數(shù)表達式是分式時,考慮分式的分母不能為0;

(3)當(dāng)函數(shù)表達式是二次根式時,被開方數(shù)非負.6、C【解析】

過點D作DE⊥AB于E,根據(jù)角平分線上的點到角的兩邊距離相等可得DE=CD,再根據(jù)S△ABC=S△BCD+S△ABD列式計算即可得解.【詳解】如圖,過點D作DE⊥AB于E,∵∠ACB=90°,BD平分∠ABC,∴DE=CD=3,∴S△ABC=S△BCD+S△ABD=BC?CD+AB?DE=(BC+AB)×3∵BC+AB=16,∴△ABC的面積=×16×3=24.故選C.本題考查角平分線的性質(zhì)定理,作輔助線是解題關(guān)鍵.7、B【解析】

根據(jù)平行四邊形的多種判定方法,分別分析A、B、C、D選項是否可以證明四邊形ABCD為平行四邊形,即可解題.【詳解】A.∠A=∠C,∠B=∠D,根據(jù)四邊形的內(nèi)角和為360°,可推出∠A+∠B=180°,所以AD∥BC,同理可得AB∥CD,所以四邊形ABCD為平行四邊形,故A選項正確;B.∠A+∠B=180°,∠C+∠D=180°即可證明AD∥BC,條件不足,不足以證明四邊形ABCD為平行四邊形,故B選項錯誤.C.∠A+∠B=180°,∠B+∠C=180°即可證明AB∥CD,AD∥BC,根據(jù)平行四邊形的定義可以證明四邊形ABCD為平行四邊形,故C選項正確;D.∠A=∠B=∠C=90°,則∠D=90°,四個內(nèi)角均為90°可以證明四邊形ABCD為矩形,故D選項正確;故選B.8、A【解析】

連接E、F兩點,由三角形的面積公式我們可以推出S△EFC=S△BCF,S△EFD=S△ADF,所以S△EFG=S△BCQ,S△EFP=S△ADP,因此可以推出陰影部分的面積就是S△APD+S△BQC.【詳解】連接E、F兩點,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴△EFC的FC邊上的高與△BCF的FC邊上的高相等,∴S△EFC=S△BCF,∴S△EFQ=S△BCQ,同理:S△EFD=S△ADF,∴S△EFP=S△ADP,∵S△APD=1cm1,S△BQC=4cm1,∴S四邊形EPFQ=6cm1,故陰影部分的面積為6cm1.故選A.本題主要考查平行四邊形的性質(zhì),三角形的面積,解題的關(guān)鍵在于求出各三角形之間的面積關(guān)系.二、填空題(本大題共5個小題,每小題4分,共20分)9、(﹣1.5,0),(1.5,0),(﹣6,0)【解析】

本題可從兩個三角形相似入手,根據(jù)C點在x軸上得知C點縱坐標(biāo)為0,討論OC與OA對應(yīng)以及OC與OB對應(yīng)的情況,分別討論即可.【詳解】解:∵點C在x軸上,∴∠BOC=90°,兩個三角形相似時,應(yīng)該與∠BOA=90°對應(yīng),若OC與OA對應(yīng),則OC=OA=6,C(﹣6,0);若OC與OB對應(yīng),則OC=1.5,C(﹣1.5,0)或者(1.5,0).∴C點坐標(biāo)為:(﹣1.5,0),(1.5,0),(﹣6,0).故答案為(﹣1.5,0),(1.5,0),(﹣6,0).考點:相似三角形的判定;坐標(biāo)與圖形性質(zhì).10、6cm.【解析】試題分析:由∠ADE=∠C,∠A是公共角,根據(jù)有兩角對應(yīng)相等的三角形相似,即可證得△ADE∽△ACB,又由相似三角形面積的比等于相似比的平方,即可得,然后由AE=2,△ADE的面積為4,四邊形BCDE的面積為5,即可求得AB的長為6cm.故答案為6cm.考點:相似三角形的判定與性質(zhì).11、k≤【解析】

根據(jù)方程有兩個實數(shù)根可以得到根的判別式,進而求出的取值范圍.【詳解】解:由題意可知:解得:故答案為:本題考查了根的判別式的逆用從方程根的情況確定方程中待定系數(shù)的取值范圍,屬中檔題型,解題時需注意認真理解題意.12、解:∠D=∠B或∠AED=∠C.【解析】

根據(jù)相似三角形的判定定理再補充一個相等的角即可.【詳解】解:∵∠DAB=∠CAE

∴∠DAE=∠BAC

∴當(dāng)∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD?AC=AB?AE時兩三角形相似.

故答案為∠D=∠B(答案不唯一).13、【解析】

設(shè)y=kx,把點(1,﹣2)代入即可(答案不唯一).【詳解】設(shè)y=kx,把點(1,﹣2)代入,得k=-2,∴(答案不唯一).故答案為:.本題考查了待定系數(shù)法求一次函數(shù)解析式,利用待定系數(shù)法求函數(shù)解析式的一般步驟:①先設(shè)出函數(shù)解析式的一般形式,如求一次函數(shù)的解析式時,先設(shè)y=kx+b(k≠0);②將已知點的坐標(biāo)代入所設(shè)的解析式,得到關(guān)于待定系數(shù)的方程或方程組;③解方程或方程組,求出待定系數(shù)的值,進而寫出函數(shù)解析式.三、解答題(本大題共5個小題,共48分)14、(1)6-t,+t;(2)①直線DE的解析式為:y=-;②【解析】

(1)由O(1,1),A(6,1),C(1,3),可得:OA=6,OC=3,根據(jù)矩形的對邊平行且相等,可得:AB=OC=3,BC=OA=6,進而可得點B的坐標(biāo)為:(6,3),然后根據(jù)E點與F點的運動速度與運動時間即可用含t的代數(shù)式表示OE,OF;(2)①由翻折的性質(zhì)可知:△OPF≌△DPF,進而可得:DF=OF,然后由t=1時,DF=OF=,CF=OC-OF=,然后利用勾股定理可求CD的值,進而可求點D和E的坐標(biāo);利用待定系數(shù)可得直線DE的解析式;②先確定出k的值,再分情況計算S的表達式,并確認b的取值.【詳解】(1)∵O(1,1),A(6,1),C(1,3),∴OA=6,OC=3,∵四邊形OABC是矩形,∴AB=OC=3,BC=OA=6,∴B(6,3),∵動點F從O點以每秒1個單位長的速度沿OC向終點C運動,運動秒時,動點E從點A出發(fā)以相等的速度沿AO向終點O運動,∴當(dāng)點E的運動時間為t(秒)時,AE=t,OF=+t,則OE=OA-AE=6-t,故答案為:6-t,+t;(2)①當(dāng)t=1時,OF=1+=,OE=6-1=5,則CF=OC-OF=3-=,由折疊可知:△OEF≌△DEF,∴OF=DF=,由勾股定理,得:CD=1,∴D(1,3);∵E(5,1),∴設(shè)直線DE的解析式為:y=mx+n(k≠1),把D(1,3)和E(5,1)代入得:,解得:,∴直線DE的解析式為:y=-;②∵MN∥DE,∴MN的解析式為:y=-,當(dāng)y=3時,-=3,x=(b-3)=b-4,∴CM=b-4,分三種情況:i)當(dāng)M在邊CB上時,如圖2,∴BM=6-CM=6-(b-4)=11-b,DM=CM-1=b-5,∵1≤DM<5,即1≤b-5<5,∴≤b<,∴S=BM?AB=×3(11?b)=15-2b=-2b+15(≤b<);ii)當(dāng)M與點B重合時,b=,S=1;iii)當(dāng)M在DB的延長線上時,如圖3,∴BM=CM-6=b-11,DM=CM-1=b-5,∵DM>5,即b-5>5,∴b>,∴S=BM?AB=×3(b?11)=2b-15(b>);綜上,.本題是四邊形和一次函數(shù)的綜合題,考查了動點的問題、矩形的性質(zhì)、全等三角形的判定與性質(zhì)等知識,解(1)的關(guān)鍵是:明確動點的時間和速度;解(2)的關(guān)鍵是:由翻折的性質(zhì)可知:△OEF≌△DEF,并采用了分類討論的思想,注意確認b的取值范圍.15、(1)見解析;(2)①,,②,,見解析.【解析】

(1)由平行線的性質(zhì)和角平分線的性質(zhì)即可證明結(jié)論;(2)①由(1)題的思路可求得FG的長,再證明△BCG是等邊三角形,從而得,過點作交延長線于點,在Rt△AFH中用勾股定理即可求出AF的長;②若使點恰好落在邊上且為等腰三角形,易得F、G兩點重合于點E,再結(jié)合(1)(2)的結(jié)論進行分析即可得到結(jié)論.【詳解】解:(1)∵四邊形是平行四邊形,∴,.∴,又∵、是與的角平分線,∴,即∠AEB=90°,∴,∵,∴,又∵是的角平分線、∴,∴.同理可得.∴;(2)解:①由已知可得,、仍是與的角平分線且,,,,.如圖,過點作交延長線于點.∵,,..∵,,,,,,.②,(類似答案均可).若使點恰好落在邊上,則易得F、G兩點重合于點E,又由(1)(2)的結(jié)論知,,所以平行四邊形的邊應(yīng)滿足;若使點恰好落在邊上且為等腰三角形,則EA=EB,所以∠EAB=∠EBA,又因為、仍是與的角平分線,所以∠CBA=∠BAD=90°,所以∠C=90°.本題考查了平行四邊形的性質(zhì)、角平分線的概念、平行線的性質(zhì)、垂直的定義、等腰三角形和等邊三角形的判定和性質(zhì)、勾股定理和30°角的直角三角形的性質(zhì),考查的知識點多,綜合性強,解題的關(guān)鍵是熟練掌握上述知識,弄清題意,理清思路,注重知識的前后聯(lián)系.16、a(a-b)2,x=-3或x=-9.【解析】

(1)先提取公因式,在運用公式法因式分解即可。(2)運用因式分解法,即可解方程?!驹斀狻拷猓海?)a3-2a2b+ab2=a(a2-2ab+b2)=a(a-b)2(2)x2+12x+27=0(x+3)(x+9)=27即:x+3=0或x+9=0解得:x=-3或x=-9本題考查了因式分解及其應(yīng)用,特別是用因式分解解一元二次方程是常用的方法。17、見解析.【解析】

連接AC交BD與點O.由四邊形AECF是平行四邊形,可證OA=OC,OE=OF,又BE=DF,所以O(shè)B=OD,根據(jù)對角線互相平分的四邊形是平行四邊形可證結(jié)論成立.【詳解】證明:連接AC交BD與點O.∵四邊形AECF是平行四邊形,∴OA=OC,OE=OF,∵BE=DF,∴OE+BE=OF+DF,∴OB=OD,∴四邊形ABCD是平行四邊形.本題主要考查了平行四邊形的判定,平行四邊形的判定方法有:①兩組對邊分別平行的四邊形是平行四邊形;②一組對邊平行且相等的四邊形是平行四邊形;③兩組對邊分別相等的四邊形是平行四邊形;④對角線互相平分的四邊形是平行四邊形;⑤.兩組對角分別相等的四邊形是平行四邊形.18、1【解析】

先利用完全平方公式計算,然后把二次根式化為最簡二次根式后合并即可.【詳解】原式=3+3﹣2+1﹣=1.本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.一、填空題(本大題共5個小題,每小題4分,共20分)19、-7【解析】

將(x+3)(x+n)的形式轉(zhuǎn)化為多項式,通過對比得出m、n的值,即可計算得出m+n的結(jié)果.【詳解】(x+3)(x+n)=+(3+n)x+3n,對比+mx-15,得出:3n=﹣15,m=3+n,則:n=﹣5,m=﹣2.所以m+n=﹣2﹣5=﹣7.本題考查了因式分解,解題關(guān)鍵在于通過對比兩個多項式,得出m、n的值.20、1或3【解析】

數(shù)形結(jié)合,畫出菱形,根據(jù)菱形的性質(zhì)及勾股定理即可確定BP的值【詳解】解:連接AC和BD交于一點O,四邊形ABCD為菱形垂直平分AC,點P在線段AC的垂直平分線上,即BD上在直角三角形APO中,由勾股定理得如下圖所示,當(dāng)點P在BO之間時,BP=BO-PO=2-1=1;如下圖所示,當(dāng)點P在DO之間時,BP=BO+PO=2+1=3故答案為:1或3本題主要考查了菱形的性質(zhì)及勾股定理,熟練應(yīng)用菱形的性質(zhì)及勾股定理求線段長度是解題的關(guān)鍵.21、【解析】將變形為,然后把已知條件變形后代入進行計算即可.解:原式=,把x+y-1變形為x+y=1代入,得原式=.“點睛”本題考查了代數(shù)式求值,正確的進行代數(shù)式的變形是解題的關(guān)鍵.22、3或【解析】試題分析:當(dāng)5為斜邊時,則第三邊長為:=3;當(dāng)5和4為直角邊時,則第三邊長為:,即第三邊長為3或.考點:直角三角形的勾股定理23、【解析】

根據(jù)一元二次方程解的定義,將x=1代入原方程列出關(guān)于k的方程,通過解方程求得k值;最后根據(jù)根與系數(shù)的關(guān)系求得方程的另一根.【詳解】解:將x=1代入關(guān)于x的方程x2+kx?1=0,

得:1+k?1=0

解得:k=2,

設(shè)方程的另一個根為a,

則1+a=?2,

解得:a=?1,

故方程的另一個根為?1.

故答案是:?1.本題考查的是一元二次方程的解集根與系數(shù)的關(guān)系.一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.即用這個數(shù)代替未知數(shù)所得式子仍然成立.二、解答題(本大題共3個小題,共30分)24、(1)見解析;(2)-4.【解析】【分析】(1)由對角線互相垂直平分的四邊形是菱形,AO=CO,EO=FO,AC⊥EF即可證得;(2)先求出AC、BD的長,再根據(jù)已知求出EF的長,然后利用菱形的面積公式進行計算即可得.【詳解】(1)如圖,連接AC,交BD于點O,∵四邊形ABCD是正方形,∴OA=OC,OB=OD,又∵BE=DF,∴BE-BO=DF-DO,即OE=OF,∴四邊形AFCE是平行四邊形,∵AC⊥EF,∴□AFCE是菱形;(2)∵四邊形ABCD是正方形,∴AC=BD,AB=AD=2,∠BAD=90°∴AC=BD=,∵AB=BE=DF,∴BF=DE=-2,∴EF=4-,∴S菱形=EF·AC=(4-)·=-4.【點睛】本題考查了正方形的性質(zhì),菱形的判定與性質(zhì),熟練掌握正方形的性質(zhì)、菱形的判定與性質(zhì)定理、準(zhǔn)確添加輔助線是解題的關(guān)鍵.25、(1)4(4)10+45【解析】

(1)把A點坐標(biāo)代入反比例函數(shù)式y(tǒng)=-12x,求出a值,則A的橫坐標(biāo)可知,由條件知AB=BC,求出OC的長度,則求出D點的坐標(biāo),把D點坐標(biāo)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論