版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁威海市重點中學2024年數(shù)學九年級第一學期開學考試模擬試題題號一二三四五總分得分A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)下列成語所描述的事件為隨機事件的是()A.守株待兔 B.水中撈月 C.甕中捉鱉 D.拔苗助長2、(4分)下列圖形中,是中心對稱但不是軸對稱圖形的有()A.1個 B.2個 C.3個 D.4個3、(4分)點E是正方形ABCD對角線AC上,且EC=2AE,Rt△FEG的兩條直角邊EF、EG分別交BC、DC于M、N兩點,若正方形ABCD的邊長為a,則四邊形EMCN的面積()A.a(chǎn)2 B.a(chǎn)2 C.a(chǎn)2 D.a(chǎn)24、(4分)使有意義的x的取值范圍是(▲)A.x>-1 B.x≥-1 C.x≠-1 D.x≤-15、(4分)如圖,E為邊長為2的正方形ABCD的對角線上一點,BE=BC,P為CE上任意一點,PQ⊥BC于點Q,PR⊥BE于R,則PQ+PR的值為()A. B. C. D.6、(4分)趙老師是一名健步走運動的愛好者為備戰(zhàn)2019中國地馬拉松系列賽·廣元站10千米群眾健身賽,她用手機軟件記錄了某個月(30天)每天健步走的步數(shù)(單位:萬步),將記錄結(jié)果繪制成了如圖所示的統(tǒng)計圖在每天健步走的步數(shù)這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是()A.2.2,2.3 B.2.4,2.3 C.2.4,2.35 D.2.3,2.37、(4分)平行四邊形ABCD中,∠A比∠B大40°,則∠D的度數(shù)為()A.60° B.70° C.100° D.110°8、(4分)如圖,在四邊形ABCD中,AC與BD相交于點O,AD∥BC,AC=BD,那么下列條件中不能判定四邊形ABCD是矩形的是()A.AD=BC B.AB=CD C.∠DAB=∠ABC D.∠DAB=∠DCB二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)方程的解為_________.10、(4分)計算:若,求的值是.11、(4分)寫出一個經(jīng)過二、四象限的正比例函數(shù)_________________________.12、(4分)如圖,在矩形ABCD中,對角線AC、BD相交于點O,點E.F分別是AO、AD的中點,若AC=8,則EF=___.13、(4分)關于t的分式方程=1的解為負數(shù),則m的取值范圍是______.三、解答題(本大題共5個小題,共48分)14、(12分)如圖,在平行四邊形ABCD中,∠BAD、∠ABC的平分線AF、BG分別與線段CD交于點F、G,AF與BG交于點E.(1)求證:AF⊥BG,DF=CG;(2)若AB=10,AD=6,AF=8,求FG和BG的長度.15、(8分)如圖,已知直線l1:y=-2x+4與x、y軸分別交于點N、C,與直線l2:y=kx+b(k≠0)交于點M,點M的橫坐標為1,直線l2與x軸的交點為A(-2,0)(1)求k,b的值;(2)求四邊形MNOB的面積.16、(8分)已知:如圖,在△ABC中,AB=AC,點D是BC的中點,作∠EAB=∠BAD,AE邊交CB的延長線于點E,延長AD到點F,使AF=AE,連結(jié)CF.求證:BE=CF.17、(10分)如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).(1)求證:四邊形BEDF是平行四邊形;(2)當四邊形BEDF是菱形時,求EF的長.18、(10分)如圖所示,把矩形紙片ABCD沿EF折疊,使點B落在邊AD上的點B′處,點A落在點A′處.(1)求證B′E=BF;(2)設AE=a,AB=b,BF=c,試猜想a,b,c之間的一種關系,并給出證明.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)如圖,在平行四邊形ABCD中,AB=4,BC=6,分別以A,C為圓心,以大于AC的長為半徑作弧,兩弧相交于MN兩點,作直線MN交AD于點E,則△CDE的周長是_____.20、(4分)我市某中學舉辦了一次以“我的中國夢”為主題的演講比賽,最后確定7名同學參加決賽,他們的決賽成績各不相同,其中李華已經(jīng)知道自己的成績,但能否進前四名,他還必須清楚這7名同學成績的______________(填”平均數(shù)”“眾數(shù)”或“中位數(shù)”)21、(4分)將正比例函數(shù)y=﹣2x的圖象沿y軸向上平移5個單位,則平移后所得圖象的解析式是_____.22、(4分)體育張教師為了解本校八年級女生:“1分鐘仰臥起坐”的達標情況,隨機抽取了20名女生進行仰臥起坐測試.如圖是根據(jù)測試結(jié)果繪制的頻數(shù)分布直方圖.如果這組數(shù)據(jù)的中位數(shù)是40次,那么仰臥起坐次數(shù)為40次的女生人數(shù)至少有__________人.23、(4分)在平面直角坐標系中,已知點A(﹣,0),B(,0),點C在x軸上,且AC+BC=6,寫出滿足條件的所有點C的坐標_____.二、解答題(本大題共3個小題,共30分)24、(8分)某花卉種植基地準備圍建一個面積為100平方米的矩形苗圃園園種植玫瑰花,其中一邊靠墻,另外三邊用29米長的籬笆圍成.已知墻長為18米,為方便進入,在墻的對面留出1米寬的門(如圖所示),求這個苗圃園垂直于墻的一邊長為多少米?25、(10分)如圖,在四邊形中,,,,是的中點.點以每秒個單位長度的速度從點出發(fā),沿向點運動;點同時以每秒個單位長度的速度從點出發(fā),沿向點運動.點停止運動時,點也隨之停止運動.當運動時間為多少秒時,以點,,,為頂點的四邊形是平行四邊形.26、(12分)某社區(qū)準備在甲乙兩位射箭愛好者中選出一人參加集訓,兩人各射了5箭,他們的總成績(單位:環(huán))相同,小宇根據(jù)他們的成績繪制了尚不完整的統(tǒng)計圖表,并計算了甲成績的平均數(shù)和方差(見小宇的作業(yè)).小宇的作業(yè):
解:甲=(9+4+7+4+6)=6,
s甲2=[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]
=(9+4+1+4+0)
=3.6
甲、乙兩人射箭成績統(tǒng)計表
第1次
第2次
第3次
第4次
第5次
甲成績
9
4
7
4
6
乙成績
7
5
7
a
7
(1)a=________,乙=________;(2)請完成圖中表示乙成績變化情況的折線;(3)①觀察圖,可看出________的成績比較穩(wěn)定(填“甲”或“乙”).參照小宇的計算方法,計算乙成績的方差,并驗證你的判斷.②請你從平均數(shù)和方差的角度分析,誰將被選中.
參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、A【解析】
根據(jù)事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】解:A、是隨機事件,故A符合題意;B、是不可能事件,故B不符合題意;C、是必然事件,故C不符合題意;D、是不可能事件,故D不符合題意;故選A.本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.2、B【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:第1個圖形,是軸對稱圖形,不是中心對稱圖形,故錯誤;第2個圖形,不是軸對稱圖形,是中心對稱圖形,故正確;第3個圖形,不是軸對稱圖形,是中心對稱圖形,故正確;第4個圖形,是軸對稱圖形,也是中心對稱圖形,故錯誤;故選B.本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.3、D【解析】
根據(jù)題意過E作EK垂直于直線CD,垂足為K,再過E作EL垂直于直線BC,垂足為L,只要證明,則可計算.【詳解】解:根據(jù)題意過E作EK垂直于直線CD,垂足為K,再過E作EL垂直于直線BC,垂足為L.四邊形ABCD為正方形EL=EK為直角三角形故選D.本題主要考查正方形的性質(zhì),關鍵在于根據(jù)題意做輔助線.4、B【解析】分析:讓被開方數(shù)為非負數(shù)列式求值即可.解答:解:由題意得:x+1≥0,解得x≥-1.故選B.5、B【解析】
連接BP,設點C到BE的距離為h,然后根據(jù)S△BCE=S△BCP+S△BEP求出h=PQ+PR,再根據(jù)正方形的性質(zhì)求出h即可.【詳解】解:如圖,連接BP,設點C到BE的距離為h,
則S△BCE=S△BCP+S△BEP,
即BE?h=BC?PQ+BE?PR,
∵BE=BC,
∴h=PQ+PR,
∵正方形ABCD的邊長為2,
∴h=2×.
故選B.本題考查了正方形的性質(zhì),三角形的面積,熟記性質(zhì)并作輔助線,利用三角形的面積求出PQ+PR等于點C到BE的距離是解題的關鍵.6、B【解析】
中位數(shù),因圖中是按從小到大的順序排列的,所以只要找出最中間的一個數(shù)(或最中間的兩個數(shù))即可,本題是最中間的兩個數(shù);對于眾數(shù)可由條形統(tǒng)計圖中出現(xiàn)頻數(shù)最大或條形最高的數(shù)據(jù)寫出.【詳解】由條形統(tǒng)計圖中出現(xiàn)頻數(shù)最大條形最高的數(shù)據(jù)是在第四組,故眾數(shù)是2.4(萬步);因圖中是按從小到大的順序排列的,最中間的步數(shù)都是2.3(萬步),故中位數(shù)是2.3(萬步).故選B.此題考查中位數(shù),條形統(tǒng)計圖,解題關鍵在于看懂圖中數(shù)據(jù)7、B【解析】試題分析:根據(jù)平行四邊形的對角相等,鄰角之和為180°,即可求出該平行四邊形各個內(nèi)角的度數(shù).解:畫出圖形如下所示:∵四邊形ABCD是平行四邊形,∴∠B=∠D,∠A+∠B=180°,又∵∠A﹣∠B=40°,∴∠A=110°,∠B=70°,∴∠D=∠B=70°.故選B.8、B【解析】
有一個角是直角的平行四邊形是矩形;有三個角是直角的四邊形是矩形;對角線相等的平行四邊形是矩形,依據(jù)矩形的判定進行判斷即可?!驹斀狻拷猓篈.當AD=BC,AD∥BC時,四邊形ABCD是平行四邊形,再依據(jù)AC=BD,可得四邊形ABCD是矩形;B.當AB=CD,AD∥BC時,四邊形ABCD不一定是平行四邊形,也可能是等腰梯形;C.當∠DAB=∠ABC,AD∥BC時,∠DAB=∠CBA=90°,再根據(jù)AC=BD,可得△ABD≌△BAC,進而得到AD=BC,即可得到四邊形ABCD是矩形;D.當∠DAB=∠DCB,AD∥BC時,∠ABC+∠BCD=180°,即可得出四邊形ABCD是平行四邊形,再依據(jù)AC=BD,可得四邊形ABCD是矩形;故選:B.此題考查矩形的判定,解題關鍵在于掌握判定法則二、填空題(本大題共5個小題,每小題4分,共20分)9、【解析】
此題采用因式分解法最簡單,解題時首先要觀察,然后再選擇解題方法.配方法與公式法適用于所用的一元二次方程,因式分解法雖有限制,卻最簡單.【詳解】∵∴∴∴∴故答案為:.此題考查解一元二次方程-配方法,解題關鍵在于掌握運算法則.10、﹣.【解析】試題分析:∵-=3,∴y-x=3xy,∴====.故答案為:.點睛:本題考查了分式的化簡求值,把已知進行變形得出y-x=3xy,并進行整體代入是解決此題的關鍵.11、y=-2x…(答案不唯一)【解析】解:答案不唯一,只要k<0即可.如:y=-2x….故答案為y=-2x…(答案不唯一).12、2【解析】
由矩形的性質(zhì)可知:矩形的兩條對角線相等,可得BD=AC=8,即可得OD=4,在△AOD中,EF為△AOD的中位線,由此可求的EF的長.【詳解】∵四邊形ABCD為矩形,∴BD=AC=8,又∵矩形對角線的交點等分對角線,∴OD=4,又∵在△AOD中,EF為△AOD的中位線,∴EF=2.故答案為2.此題考查三角形中位線定理,解題關鍵在于利用矩形的性質(zhì)得到BD=AC=813、m<1【解析】
分式方程去分母轉(zhuǎn)化為整式方程,求出方程的解,由分式方程的解是負數(shù)確定出m的范圍即可.【詳解】去分母得:m-5=t-2,解得:t=m-1,由分式方程的解為負數(shù),得到m-1<0,且m-1≠2,解得:m<1,故答案為:m<1.此題考查了解分式方程以及解一元一次不等式,熟練掌握運算法則是解本題的關鍵.三、解答題(本大題共5個小題,共48分)14、(1)見解析(2)FG的長度為2,BG的長度為4.【解析】
試題分析:(1)由在平行四邊形ABCD中,∠BAD、∠ABC的平分線AF、BG分別與線段CD交于點F、G,易求得2∠BAF+2∠ABG=180°,即可得∠AEB=90°,證得AF⊥BG,易證得△ADF與△BCG是等腰三角形,即可得AD=DF,BC=CG,又由AD=BC,即可證得DF=CG;(2)由(1)易求得DF=CG=8,CD=AB=2,即可求得FG的長;過點B作BH∥AF交DC的延長線于點H,易證得四邊形ABHF為平行四邊形,即可得△HBG是直角三角形,然后利用勾股定理,即可求得BG的長.(1)證明:∵AF平分∠BAD,∴∠DAF=∠BAF=∠BAD.∵BG平分∠ABC,∴∠ABG=∠CBG=∠ABC.∵四邊形ABCD平行四邊形,∴AD∥BC,AB∥CD,AD=BC,∴∠BAD+∠ABC=180°,即2∠BAF+2∠ABG=180°,∴∠BAF+∠ABG=90°.∴∠AEB=180°﹣(∠BAF+∠ABG)=180°﹣90°=90°.∴AF⊥BG;∵AB∥CD,∴∠BAF=∠AFD,∴∠AFD=∠DAF,∴DF=AD,∵AB∥CD,∴∠ABG=∠CGB,∴∠CBG=∠CGB,∴CG=BC,∵AD=BC.∴DF=CG;(2)解:∵DF=AD=1,∴CG=DF=1.∴CG+DF=12,∵四邊形ABCD平行四邊形,∴CD=AB=2.∴2+FG=12,∴FG=2,過點B作BH∥AF交DC的延長線于點H.∴∠GBH=∠AEB=90°.∵AF∥BH,AB∥FH,∴四邊形ABHF為平行四邊形.∴BH=AF=8,F(xiàn)H=AB=2.∴GH=FG+FH=2+2=12,∴在Rt△BHG中:BG=(勾股定理).∴FG的長度為2,BG的長度為.【點評】此題考查了平行四邊形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)、垂直的定義以及勾股定理等知識.此題綜合性較強,難度較大,注意掌握數(shù)形結(jié)合思想的應用,注意掌握輔助線的作法.15、(1)k=,b=;(2)【解析】
(1)根據(jù)待定系數(shù)法可求出解析式,得到k、b的值;(2)根據(jù)函數(shù)解析式與坐標軸的交點,可利用面積公式求出四邊形的面積.【詳解】(1)M為l1與l2的交點令M(1,y),代入y=2x+4中,解得y=2,即M(1,2),將M(1,2)代入y=kx+b,得k+b=2①將A(-2,0)代入y=kx+b,得-2k+b=0②由①②解得k=,b=(2)解:由(1)知l2:y=x+,當x=0時y=即OB=∴S△AOB=
OA·OB=×2×
=在y=-2x+4令y=0,得N(2,0)又因為A(-2,0),故AN=4所以S△AMN=×AN×ym=×4×2=4故SMNOB=S△AMN-S△AOB=4-=.考查了兩條直線的相交問題,以及一次函數(shù)圖象的點的特征,要熟練掌握.16、證明見解析.【解析】試題分析:根據(jù)等腰三角形的性質(zhì)可得∠CAD=∠BAD,由等量關系可得∠CAD=∠EAB,有SAS可證△ACF≌△ABE,再根據(jù)全等三角形的對應邊相等即可得證.試題解析:證明:∵AB=AC,點D是BC的中點,∴∠CAD=∠BAD.又∵∠EAB=∠BAD,∴∠CAD=∠EAB.在△ACF和△ABE中,∵AC=AB,∠CAF=∠BAE,AF=AE,∴△ACF≌△ABE(SAS),∴BE=CF.點睛:此題考查了等腰三角形的性質(zhì)以及全等三角形的判定與性質(zhì).此題難度中等,注意掌握數(shù)形結(jié)合思想的應用.17、(1)證明見解析;(2).【解析】
(1)根據(jù)矩形ABCD的性質(zhì),判定△BOE≌△DOF(ASA),進而得出結(jié)論;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的長.【詳解】(1)證明:∵四邊形ABCD是矩形,O是BD的中點,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,∴△BOE≌△DOF(ASA),∴EO=FO,∴四邊形BEDF是平行四邊形;(2)當四邊形BEDF是菱形時,BD⊥EF,設BE=x,則
DE=x,AE=6-x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6-x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.本題主要考查了矩形的性質(zhì),菱形的性質(zhì)、勾股定理、全等三角形的判定與性質(zhì),熟練掌握矩形的性質(zhì)和勾股定理,證明三角形全等是解決問的關鍵18、(1)證明見解析;(1)a,b,c三者存在的關系是a+b>c,理由見解析.【解析】(1)首先根據(jù)題意得B′F=BF,∠B′FE=∠BFE,接著根據(jù)平行線的性質(zhì)和等腰三角形的判定即可證明B′E=BF;
(1)解答此類題目時要仔細讀題,根據(jù)三角形三邊關系求解分類討論解答,要提高全等三角形的判定結(jié)合勾股定理解答.證明:(1)由題意得B′F=BF,∠B′FE=∠BFE,
在矩形ABCD中,AD∥BC,
∴∠B′EF=∠BFE,
∴∠B′FE=∠B'EF,
∴B′F=BE,
∴B′E=BF;
解:(1)答:a,b,c三者關系不唯一,有兩種可能情況:
(?。゛,b,c三者存在的關系是a1+b1=c1.
證明:連接BE,則BE=B′E,
由(1)知B′E=BF=c,
∴BE=c.
在△ABE中,∠A=90°,
∴AE1+AB1=BE1,
∵AE=a,AB=b,
∴a1+b1=c1;
(ⅱ)a,b,c三者存在的關系是a+b>c.
證明:連接BE,則BE=B′E.
由(1)知B′E=BF=c,
∴BE=c,
在△ABE中,AE+AB>BE,
∴a+b>c.“點睛”此題以證明和探究結(jié)論形式來考查矩形的翻折、等角對等邊、三角形全等、勾股定理等知識.第一,較好考查學生表述數(shù)學推理和論證能力,第(1)問重點考查了學生邏輯推理的能力,主要利用等角對等邊、翻折等知識來證明;第二,試題呈現(xiàn)顯示了濃郁的探索過程,試題設計的起點低,圖形也很直觀,也可通過自已動手操作,尋找?guī)缀卧刂g的對應關系,形成較為常規(guī)的方法解決問題,第(1)問既考查了學生對勾股定理掌握的程度又考查學生的數(shù)學猜想和探索能力,這對于培養(yǎng)學生創(chuàng)新意識和創(chuàng)新精神十分有益;第三,解題策略多樣化在本題中得到了充分的體現(xiàn).一、填空題(本大題共5個小題,每小題4分,共20分)19、1【解析】
利用垂直平分線的作法得MN垂直平分AC,則EA=EC,利用等線段代換得到△CDE的周長=AD+CD,然后根據(jù)平行四邊形的性質(zhì)可確定周長的值.【詳解】解:利用作圖得MN垂直平分AC,∴EA=EC,∴△CDE的周長=CE+CD+ED=AE+ED+CD=AD+CD,∵四邊形ABCD為平行四邊形,∴AD=BC=6,CD=AB=4,∴△CDE的周長=6+4=1.故答案為1.本題考查了作圖?基本作圖,也考查了平行四邊形的性質(zhì).解題的關鍵是熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).20、中位數(shù)【解析】
七名選手的成績,如果知道中位數(shù)是多少,與自己的成績相比較,就能知道自己是否能進入前四名,因為中位數(shù)是七個數(shù)據(jù)中的第四個數(shù),【詳解】解:因為七個數(shù)據(jù)從小到大排列后的第四個數(shù)是這七個數(shù)的中位數(shù),知道中位數(shù),然后與自己的成績比較,就知道能否進入前四,即能否參加決賽.故答案為:中位數(shù).考查中位數(shù)、眾數(shù)、平均數(shù)反映一組數(shù)據(jù)的特征,中位數(shù)反映之間位置的數(shù),說明比它大的占一半,比它小的占一半;眾數(shù)是出現(xiàn)次數(shù)最多的數(shù),平均數(shù)反映一組數(shù)據(jù)的平均水平和集中趨勢,理解意義是正確判斷的前提.21、y=-2x+1【解析】根據(jù)上下平移時只需讓b的值加減即可,進而得出答案即可.解:原直線的k=-2,b=0;向上平移1個單位得到了新直線,
那么新直線的k=-2,b=0+1=1.
故新直線的解析式為:y=-2x+1.
故答案為y=-2x+1.“點睛”此題主要考查了一次函數(shù)圖象與幾何變換,求直線平移后的解析式時要注意平移時k的值不變,只有b發(fā)生變化.22、1【解析】
根據(jù)中位數(shù)的定義求解可得.【詳解】解:∵這20個數(shù)據(jù)的中位數(shù)是第10、11個數(shù)據(jù)的平均數(shù),且第10個、11個全部位于第三組(40≤x<10)內(nèi),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年油罐項目環(huán)保設施運行監(jiān)測與數(shù)據(jù)分析合同范本3篇
- 2025年度出租車行業(yè)新能源車輛推廣應用合同3篇
- 2024年版技術服務合同:云計算平臺建設與維護
- 2024年食品工業(yè)原料采購協(xié)議示例版
- 2025年度沖擊鉆施工材料采購與供應鏈管理合同3篇
- 2025年度智能家居安全系統(tǒng)承包套房裝修合同3篇
- 2025年度新型環(huán)保項目貸款合同范本3篇
- 2024限定版汽車銷售協(xié)議范本一
- 2024年茶葉種植與加工項目合作協(xié)議版
- 2024年項目實施委托協(xié)議版B版
- 消防改造工程施工組織設計
- 中醫(yī)藥特色護理在老年慢性疾病養(yǎng)生中的應用課件
- 反恐怖防范知識課件
- 汽車發(fā)動機機械系統(tǒng)檢修課件(全)全書教學教程完整版電子教案最全幻燈片
- 紙箱類檢測講解
- 設計階段的HAZOP總體分析
- 2022《義務教育數(shù)學課程標準(2022版)》解讀
- 螺紋及緊固件基礎知識
- 滴滴打車項目融資計劃書ppt課件
- 組織知識清單一覽表
- 起重機設計手冊
評論
0/150
提交評論