版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第2頁,共4頁四川省樂山市井研縣2024-2025學(xué)年九年級數(shù)學(xué)第一學(xué)期開學(xué)綜合測試試題題號一二三四五總分得分A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)一天早上小華步行上學(xué),他離開家后不遠(yuǎn)便發(fā)現(xiàn)數(shù)學(xué)書忘在了家里,于是以相同的速度回家去拿,到家后發(fā)現(xiàn)弟弟把牛奶灑在了地上,就放下手中的東西,收拾好后才離開.為了不遲到,小華跑步到了學(xué)校,則小華離學(xué)校的距離y與時間t之間的函數(shù)關(guān)系的大致圖象是()A. B. C. D.2、(4分)下列命題中,不正確的是()A.對角線互相垂直的四邊形是菱形 B.正多邊形每個內(nèi)角都相等C.對頂角相等 D.矩形的兩條對角線相等3、(4分)一個三角形的三個內(nèi)角之比是1∶2∶3,且最小邊長度是8,則最長邊的長度是()A.10 B.12 C.16 D.244、(4分)熊大、熊二發(fā)現(xiàn)光頭強(qiáng)在距離它們300米處伐木,熊二便勻速跑過去阻止,2分鐘后熊大以熊二1.2倍的速度跑過去,結(jié)果它們同時到達(dá),如果設(shè)熊二的速度為x米/分鐘,那么可列方程為().A. B.C. D.5、(4分)用反證法證明:“直角三角形至少有一個銳角不小于45°”時,應(yīng)先假設(shè)()A.直角三角形的每個銳角都小于45°B.直角三角形有一個銳角大于45°C.直角三角形的每個銳角都大于45°D.直角三角形有一個銳角小于45°6、(4分)把n邊形變?yōu)檫呅?,?nèi)角和增加了720°,則x的值為()A.6 B.5 C.4 D.37、(4分)如果一個正多邊形的中心角為60°,那么這個正多邊形的邊數(shù)是()A.4 B.5 C.6 D.78、(4分)如圖,在梯形ABCD中,AB∥CD,中位線EF與對角線AC、BD交于M、N兩點,若EF=18cm,MN=8cm,則AB的長等于()cmA.10 B.13 C.20 D.26二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)若,則的值為______.10、(4分)如圖,在直角三角形中,,、、分別是、、的中點,若=6厘米,則的長為_________.11、(4分)如圖,在矩形ABCD中,E、F、G、H分別是四條邊的中點,HF=2,EG=4,則四邊形EFGH的面積為____________.12、(4分)若x1,x2是一元二次方程x2+x﹣2=0的兩個實數(shù)根,則x1+x2+x1x2=_____.13、(4分)已知一次函數(shù)圖像不經(jīng)過第一象限,求m的取值范圍是__________.三、解答題(本大題共5個小題,共48分)14、(12分)如圖,已知一次函數(shù)的圖象與反比例函數(shù)第一象限內(nèi)的圖象相交于點,與軸相交于點.(1)求和的值;(2)觀察反比例函數(shù)的圖象,當(dāng)時,請直接寫出的取值范圍;(3)如圖,以為邊作菱形,使點在軸正半軸上,點在第一象限,雙曲線交于點,連接、,求.15、(8分)先化簡,再求值:(x﹣1+)÷,其中x的值從不等式組的整數(shù)解中選?。?6、(8分)(1)計算:(2)解方程:(2x1)(x3)417、(10分)閱讀下列材料,并解爺其后的問題:我們知道,三角形的中位線平行于第一邊,且等于第三邊的一半,我們還知道,三角形的三條中位線可以將三角形分成四個全等的一角形,如圖1,若D、E、F分別是三邊的中點,則有,且(1)在圖1中,若的面積為15,則的面積為___________;(2)在圖2中,已知E、F、G、H分別是AB、BC、CD、AD的中點,求證:四邊形EFGH是平行四邊形;(3)如圖3中,已知E、F、G、H分別是AB、BC、CD、AD的中點,,則四邊形EFGH的面積為___________.18、(10分)如圖,在平面直角坐標(biāo)系中,點D是正方形OABC的邊AB上的動點,OC=1.以AD為一邊在AB的右側(cè)作正方形ADEF,連結(jié)BF交DE于P點.(1)請直接寫出點A、B的坐標(biāo);(2)在點D的運動過程中,OD與BF是否存在特殊的位置關(guān)系?若存在,試寫出OD與BF的位置關(guān)系,并證明;若不存在,請說明理由.(3)當(dāng)P點為線段DE的三等分點時,試求出AF的長度.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)如圖,四邊形是正方形,點在上,繞點順時針旋轉(zhuǎn)后能夠與重合,若,,試求的長是__________.20、(4分)已知x+y=﹣1,xy=3,則x2y+xy2=_____.21、(4分)如圖,在平面直角坐標(biāo)系中,已知直線分別交反比例函數(shù)和在第一象限的圖象于點過點作軸于點交的圖象于點連結(jié).若是等腰三角形,則的值是________________.22、(4分)如果關(guān)于x的方程有實數(shù)根,則m的取值范圍是_______________.23、(4分)如圖,P是矩形ABCD的邊AD上一個動點,矩形的兩條邊AB、BC的長分別為6和8,那么點P到矩形的兩條對角線AC和BD的距離之和是__.二、解答題(本大題共3個小題,共30分)24、(8分)某市公交快速通道開通后,為響應(yīng)市政府“綠色出行”的號召,家住新城的小王上班由自駕車改為乘坐公交車.已知小王家距上班地點18千米,他用乘公交車的方式平均每小時行駛的路程比他用自駕車的方式平均每小時行駛的路程的2倍還多9千米,他從家出發(fā)到達(dá)上班地點,乘公交車方式所用時間是自駕車方式所用時間的.小王用自駕車方式上班平均每小時行駛多少千米?25、(10分)已知:P是正方形ABCD對角線BD上一點,PE⊥DC,PF⊥BC,E、F分別為垂足.求證:AP=EF.26、(12分)為了解初二學(xué)生參加戶外活動的情況,某縣教育局對其中500名初二學(xué)生每天參加戶外活動的時間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖。(參加戶外活動的時間分為四種類別:“0.5小時”,“1小時”,“1.5小時”,“2小時”)請根據(jù)圖示,回答下列問題:(1)求學(xué)生每天戶外活動時間的平均數(shù),眾數(shù)和中位數(shù);(2)該縣共有12000名初二學(xué)生,請估計該縣每天戶外活動時間超過1小時的初二學(xué)生有多少人?
參考答案與詳細(xì)解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、B【解析】
根據(jù)題意可得小華步行上學(xué)時小華離學(xué)校的距離減小,而后離開家后不遠(yuǎn)便發(fā)現(xiàn)數(shù)學(xué)書忘在了家里,于是以相同的速度回家去拿時小華離學(xué)校的距離增大,到家后發(fā)現(xiàn)弟弟把牛奶灑在了地上,就放下手中的東西,收拾好后才離開距離不變,小華跑步到了學(xué)校時小華離學(xué)校的距離減小直至為1.【詳解】解:根據(jù)題意可得小華步行上學(xué)時小華離學(xué)校的距離減小,而后離開家后不遠(yuǎn)便發(fā)現(xiàn)數(shù)學(xué)書忘在了家里,于是以相同的速度回家去拿時小華離學(xué)校的距離增大,到家后發(fā)現(xiàn)弟弟把牛奶灑在了地上,就放下手中的東西,收拾好后才離開距離不變,小華跑步到了學(xué)校時小華離學(xué)校的距離減小直至為1.故選:B.本題考查函數(shù)的圖象,關(guān)鍵是根據(jù)題意得出距離先減小再增大,然后不變后減小為1進(jìn)行判斷.2、A【解析】
根據(jù)菱形的判定,正多邊形的性質(zhì),對頂角的性質(zhì),矩形的性質(zhì)依次分析即可.【詳解】對角線互相垂直的平行四邊形是菱形,故A錯誤,符合題意;正多邊形每個內(nèi)角都相等,故B正確,不符合題意;對頂角相等,故C正確,不符合題意;矩形的兩條對角線相等,故D正確,不符合題意,故選:A.此題考查判斷命題正確與否,正確掌握菱形的判定,正多邊形的性質(zhì),對頂角的性質(zhì),矩形的性質(zhì)是解題的關(guān)鍵.3、C【解析】
根據(jù)三角形的三個內(nèi)角之比是1:2:3,求出各角的度數(shù),再根據(jù)直角三角形的性質(zhì)解答即可.【詳解】設(shè)一份是x,則三個角分別是x,2x,3x.再根據(jù)三角形的內(nèi)角和定理,得:x+2x+3x=180,解得:x=30,則2x=60,3x=90.故此三角形是有一個30角的直角三角形.根據(jù)30的角所對的直角邊是斜邊的一半,得,最長邊的長度是1.故選C.此題要首先根據(jù)三角形的內(nèi)角和定理求得三個角的度數(shù),再根據(jù)直角三角形的性質(zhì)求得最長邊的長度即可.4、C【解析】
設(shè)熊二的速度為x米/分鐘,則熊大的速度為1.2x米/分鐘,根據(jù)題意可得走過300米,熊大比熊二少用2分鐘,列方程即可.【詳解】解:設(shè)熊二的速度為x米/分鐘,則熊大的速度為1.2x米/分鐘,根據(jù)題意可得:,故選:C.本題考查了由實際問題抽象出分式方程,解答本題的關(guān)鍵是讀懂題意,找出合適的等量關(guān)系,列方程.5、A【解析】分析:找出原命題的方面即可得出假設(shè)的條件.詳解:有一個銳角不小于45°的反面就是:每個銳角都小于45°,故選A.點睛:本題主要考查的是反證法,屬于基礎(chǔ)題型.找到原命題的反面是解決這個問題的關(guān)鍵.6、C【解析】
根據(jù)內(nèi)角和公式列出方程即可求解.【詳解】把n邊形變?yōu)檫呅?,?nèi)角和增加了720°,根據(jù)內(nèi)角和公式得(n+x-2)×180°-(n-2)×180°=720°,解得x=4,故選C.此題主要考查多邊形的內(nèi)角和公式,解題的關(guān)鍵是熟知公式的運用.7、C【解析】試題解析:這個多邊形的邊數(shù)為:故選C.8、D【解析】分析:首先根據(jù)梯形中位線的性質(zhì)得出AB+CD=36cm,根據(jù)MN的長度以及三角形中位線的性質(zhì)得出EM=FN=5cm,從而得出CD=10cm,然后得出答案.詳解:∵EF=,∴AB+CD=36cm,∵M(jìn)N=8cm,EF=18cm,∴EM+FN=10cm,∴EM=FN=5cm,根據(jù)三角形中位線的性質(zhì)可得:CD=2EM=10cm,∴AB=36-10=26cm,故選D.點睛:本題主要考查的是梯形中位線以及三角形中位線的性質(zhì),屬于基礎(chǔ)題型.明確中位線的性質(zhì)是解決這個問題的關(guān)鍵.二、填空題(本大題共5個小題,每小題4分,共20分)9、.【解析】
由可得,化簡即可得到,再計算,即可求得=.【詳解】∵,∴,∴,∴,∴=.故答案為:.本題考查了完全平方公式的變形應(yīng)用,正確求得是解決問題的關(guān)鍵.10、6厘米【解析】
根據(jù)直角三角形斜邊中線等于斜邊一半算出AB,再根據(jù)中位線的性質(zhì)求出EF即可.【詳解】∵∠BCA=90°,且D是AB的中點,CD=6,∴AB=2CD=12,∵E、F是AC、BC的中點,∴EF=.故答案為:6厘米本題考查直角三角形中線的性質(zhì)、中位線的性質(zhì),關(guān)鍵在于熟練掌握相關(guān)基礎(chǔ)知識.11、4【解析】
根據(jù)題意可證明四邊形EFGH為菱形,故可求出面積.【詳解】∵四邊形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°,∵E、F、G、H分別是四條邊的中點,∴AE=DG=BE=CG,AH=DH=BF=CF,∴△AEH≌△DGH≌△BEF≌△CGF(SAS),∴EH=EF=FG=GH,∴四邊形EFGH是菱形,∵HF=2,EG=4,∴四邊形EFGH的面積為HF·EG=×2×4=4.此題主要考查菱形的判定與面積求法,解題的關(guān)鍵是熟知特殊平行四邊形的性質(zhì)與判定定理.12、-3【解析】
根據(jù)一元二次方程根與系數(shù)的關(guān)系即可解答.【詳解】由根與系數(shù)的關(guān)系可知:x1+x2=﹣1,x1x2=﹣2∴x1+x2+x1x2=﹣3故答案為﹣3本題考查了一元二次方程根與系數(shù)的關(guān)系,解題的關(guān)鍵是熟練運用根與系數(shù)的關(guān)系.13、1<m≤2【解析】【分析】一次函數(shù)圖像不經(jīng)過第一象限,則一次函數(shù)與y軸的交點在y軸的負(fù)半軸或原點.【詳解】∵圖象不經(jīng)過第一象限,即:一次函數(shù)與y軸的交點在y軸的負(fù)半軸或原點,∴1-m<0,m-2≤0∴m的取值范圍為:1<m≤2故答案為:1<m≤2【點睛】本題考核知識點:一次函數(shù)的圖象.解題關(guān)鍵點:理解一次函數(shù)的性質(zhì).三、解答題(本大題共5個小題,共48分)14、(1)n=3,k=12;(2)或;(3)S△ABE=.【解析】
(1)把A點坐標(biāo)代入一次函數(shù)解析式可求得n,則可求得A點坐標(biāo),代入反比例函數(shù)解析式則可求得k的值;
(2)根據(jù)反比例函數(shù)的性質(zhì),可得答案;
(3)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得B點坐標(biāo),根據(jù)兩點間距離公式,可得AB,根據(jù)根據(jù)菱形的性質(zhì),可得BC的長,根據(jù)平行線間的距離相等,可得S△ABE=S△ABC.【詳解】解:(1)把點坐標(biāo)代入一次函數(shù)解析式可得,∴,∵點在反比例函數(shù)圖象上,∴;(2)由圖象,得當(dāng)時,,當(dāng)時,.(3)過點作垂足為,連接,∵一次函數(shù)的圖象與軸相交于點,∴點的坐標(biāo)為,∴,∵四邊形是菱形,∴,,∴.本題考查了反比例函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法,解(2)的關(guān)鍵是利用圖象的增減性;解(3)的關(guān)鍵是利用平行線間的距離都相等得出S△ABE=S△ABC是解題關(guān)鍵.15、原式=【解析】試題分析:先根據(jù)分式的混合運算順序和法則化簡原式,再求出不等式組的整數(shù)解,由分式有意義得出符合條件的x的值,代入求解可得.試題解析:原式====解不等式組得:﹣1≤x<,∴不等式組的整數(shù)解有﹣1、1、1、2,∵不等式有意義時x≠±1、1,∴x=2,則原式==1.點睛:本題主要考查分式的化簡求值及解一元一次不等式組的能力,熟練掌握分式的混合運算順序和法則及解不等式組的能力、分式有意義的條件是解題的關(guān)鍵.16、(1);(2),.【解析】
(1)先化成最簡二次根式,再合并其中的同類二次根式即可;(2)先化成一元二次方程的一般形式,再用公式法求解.【詳解】解:(1)===.(2)原方程可變形為:由一元二次方程的求根公式,得:,∴,.∴原方程的解為:,.本題考查了二次根式的混合運算和一元二次方程的解法,解題的關(guān)鍵是熟知二次根式的混合運算法則和一元二次方程的求解方法.17、(1);(2)見解析;(3)1.【解析】
(1)由三角形中位線定理得出DF∥BC,且DF=BC,△ADF≌△DBE≌△FEC≌△EFD,得出△DEF的面積=△ABC的面積=即可;
(2)連接BD,證出EH是△ABD的中位線,F(xiàn)G是△BCD的中位線,由三角形中位線定理得出EH∥BD,EH=BD,F(xiàn)G∥BD,F(xiàn)G=BD,得出EH∥FG,EH=FG,即可得出結(jié)論;
(3)證出EH是△ABD的中位線,F(xiàn)G是△BCD的中位線,由三角形中位線定理得出EH∥BD,EH=BD=,F(xiàn)G∥BD,F(xiàn)G=BD,得出EH∥FG,EH=FG,證出四邊形EFGH是平行四邊形,同理:EF∥AC,EF=AC=2,證出EH⊥EF,得出四邊形EFGH是矩形,即可得出結(jié)果.【詳解】(1)解:∵D、E、F分別是△ABC三邊的中點,
則有DF∥BC,且DF=BC,△ADF≌△DBE≌△FEC≌△EFD,
∴△DEF的面積=△ABC的面積=;
故答案為;
(2)證明:連接BD,如圖2所示:
∵E、F、G、H分別是AB、BC、CD、AD的中點,
∴EH是△ABD的中位線,F(xiàn)G是△BCD的中位線,
∴EH∥BD,EH=BD,F(xiàn)G∥BD,F(xiàn)G=BD,
∴EH∥FG,EH=FG,
∴四邊形EFGH是平行四邊形;
(3)解:∵E、F、G、H分別是AB、BC、CD、AD的中點,
∴EH是△ABD的中位線,F(xiàn)G是△BCD的中位線,
∴EH∥BD,EH=BD=,F(xiàn)G∥BD,F(xiàn)G=BD,
∴EH∥FG,EH=FG,
∴四邊形EFGH是平行四邊形,
同理:EF∥AC,EF=AC=2,
∵AC⊥BD,
∴EH⊥EF,
∴四邊形EFGH是矩形,
∴四邊形EFGH的面積=EH×EF=×2=1.故答案為(1);(2)見解析;(3)1.本題是四邊形綜合題目,考查三角形中位線定理、平行四邊形的判定、矩形的判定與性質(zhì)等知識;熟練掌握三角形中位線定理,證明四邊形EFGH是平行四邊形是解題的關(guān)鍵.18、(1)A(1,0),B(1,1);(2)OD⊥BF,理由見解析;(3)當(dāng)P點為線段DE的三等分點時,AF的長度為2或2.【解析】
(1)利用正方形的性質(zhì)得出OA=AB=1,即可得出結(jié)論;(2)利用SAS判斷出△AOD≌△BAF,進(jìn)而得出∠AOD=∠BAF,即可得出結(jié)論;(3)先表示出BD,DP,再判斷出△BDP∽△BAF,得出,代入解方程即可得出結(jié)論。【詳解】(1)∵四邊形OABC是正方形,∴BC⊥OC,AB⊥OA,OB=AB=BC=OC,∵OC=1,∴BC=AB=1,∴A(1,0),B(1,1);(2)OD⊥BF,理由:如圖,延長OD交BF于G,∵四邊形ADEF是正方形,∴AD=AF,∠BAF=∠OAD,在△AOD和△BAF中,,∴△AOD≌△BAF(SAS),∴∠AOD=∠BAF,∴∠BAF+∠AFB=90°,∴∠AOD+AFB=90°,∴∠OGF=90°,∴OD⊥BF;(3)設(shè)正方形ADEF的邊長為x,∴AF=AD=DE=x,∴BD=AB﹣AD=1﹣x,∵點P是DE的三等分點,∴DP=AF=x或DP=AF=x∵DE∥AF,∴△BDP∽△BAF,∴,∴或,∴x=2或x=2,當(dāng)P點為線段DE的三等分點時,AF的長度為2或2.本題是四邊形綜合題,主要考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),垂直的判定,相似三角形的判定和性質(zhì),用方程的思想解決問題是解本題的一、填空題(本大題共5個小題,每小題4分,共20分)19、.【解析】
由正方形的性質(zhì)得出AB=AD=3,∠ABC=∠D=∠BAD=90°,由勾股定理求出AP,再由旋轉(zhuǎn)的性質(zhì)得出△ADP≌△ABP′,得出AP′=AP=,∠BAP′=∠DAP,證出△PAP′是等腰直角三角形,得出PP′=AP,即可得出結(jié)果.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD=3,DP=1,∠ABC=∠D=∠BAD=90°,∴AP=,∵△ADP旋轉(zhuǎn)后能夠與△ABP′重合,∴△ADP≌△ABP′,∴AP′=AP=,∠BAP′=∠DAP,∴∠PAP′=∠BAD=90°,∴△PAP′是等腰直角三角形,∴PP′=AP=;故答案為:.本題考查了旋轉(zhuǎn)的性質(zhì)、勾股定理、全等三角形的性質(zhì)、等腰直角三角形的性質(zhì);熟練掌握正方形和旋轉(zhuǎn)的性質(zhì)是解決問題的關(guān)鍵.20、-1【解析】
直接利用提取公因式法分解因式,進(jìn)而把已知數(shù)據(jù)代入求出答案.【詳解】解:∵x+y=﹣1,xy=1,∴x2y+xy2=xy(x+y)=1×(﹣1)=﹣1.故答案為﹣1.本題主要考查了提取公因式法分解因式,正確分解因式是解題的關(guān)鍵.21、或【解析】
根據(jù)題意,先求出點A、B的坐標(biāo),然后得到點C的坐標(biāo),由等腰三角形的性質(zhì),進(jìn)行分類討論,即可求出k的值.【詳解】解:根據(jù)題意,有則,解得:同理可得:為等腰三角形,當(dāng)時,即整理得解得或(舍去);當(dāng)時,即整理得,解得或(舍).故答案為:或.本題利用反比例函數(shù)與一次函數(shù)交點特征將點坐標(biāo)用含的式子表示出來,對等腰三角形的腰進(jìn)行分類討論.屬于常考題型22、【解析】分析:根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=16-8m≥0,解之即可得出m的取值范圍.詳解:∵關(guān)于x的方程有實數(shù)根,
∴△=(-4)2-4×2m=16-8m≥0,
解得:m≤2
故答案為:m≤2點睛:本題考查了根的判別式,根的判別式大于0,方程有兩個不相等的實數(shù)根;根的判別式等于0,方程有兩個相等的實數(shù)根;根的判別式小于0,方程沒有實數(shù)根.23、4.1【解析】
首先連接OP,由矩形的兩條邊AB、BC的長分別為6和1,可求得OA=OD=5,△AOD的面積,然后由S△AOD=S△AOP+S△DOP=OA?PE+OD?PF求得答案.【詳解】解:連接OP,
∵矩形的兩條邊AB、BC的長分別為6和1,
∴S矩形ABCD=AB?BC=41,OA=OC,OB=OD,AC=BD=,
∴OA=OD=5,
∴S△ACD=S矩形ABCD=24,
∴S△AOD=S△ACD=12,
∵S△AOD=S
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人藝術(shù)品抵押擔(dān)保合同書4篇
- 二零二五版智能家居門窗安裝與維護(hù)服務(wù)合同3篇
- 2025年綠色建材水泥采購與施工總承包合同3篇
- 2025年個人股東對外股權(quán)轉(zhuǎn)讓協(xié)議范本與股權(quán)變更登記3篇
- 開發(fā)需求委托合同(2篇)
- 建筑材料采購分包合同(2篇)
- 2024年注冊消防工程師題庫參考答案
- 保險產(chǎn)品創(chuàng)新路演模板
- 二零二五年度汽車租賃擔(dān)保公司合同車輛作為抵押的擔(dān)保公司服務(wù)協(xié)議4篇
- 二零二五版特色小吃店轉(zhuǎn)讓與加盟協(xié)議4篇
- 2019級水電站動力設(shè)備專業(yè)三年制人才培養(yǎng)方案
- 室內(nèi)裝飾裝修施工組織設(shè)計方案
- 洗浴中心活動方案
- 送電線路工程施工流程及組織措施
- 肝素誘導(dǎo)的血小板減少癥培訓(xùn)課件
- 韓國文化特征課件
- 抖音認(rèn)證承諾函
- 清潔劑知識培訓(xùn)課件
- 新技術(shù)知識及軍事應(yīng)用教案
- 高等數(shù)學(xué)(第二版)
- 肺炎喘嗽的中醫(yī)護(hù)理常規(guī)
評論
0/150
提交評論