河南省豫南豫北名校2025屆高二上數學期末質量跟蹤監(jiān)視試題含解析_第1頁
河南省豫南豫北名校2025屆高二上數學期末質量跟蹤監(jiān)視試題含解析_第2頁
河南省豫南豫北名校2025屆高二上數學期末質量跟蹤監(jiān)視試題含解析_第3頁
河南省豫南豫北名校2025屆高二上數學期末質量跟蹤監(jiān)視試題含解析_第4頁
河南省豫南豫北名校2025屆高二上數學期末質量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省豫南豫北名校2025屆高二上數學期末質量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在三棱錐中,,,,若,,則()A. B.C. D.2.設是空間一定點,為空間內任一非零向量,滿足條件的點構成的圖形是()A.圓 B.直線C.平面 D.線段3.在平行六面體ABCD﹣A1B1C1D1中,AC與BD的交點為M,設=,=,=,則=()A.++ B.+C.++ D.+4.等比數列的公比,中有連續(xù)四項在集合中,則等于()A. B.C D.5.某班新學期開學統(tǒng)計新冠疫苗接種情況,已知該班有學生45人,其中未完成疫苗接種的有5人,則該班同學的疫苗接種完成率為()A. B.C. D.6.已知直線與x軸,y軸分別交于A,B兩點,且直線l與圓相切,則的面積的最小值為()A.1 B.2C.3 D.47.在四面體中,,,,且,,則等于()A. B.C. D.8.雙曲線的漸近線方程為()A. B.C. D.9.已知為坐標原點,點的坐標為,點的坐標滿足,則的最小值為()A B.C. D.410.為迎接2022年冬奧會,某校在體育冰球課上加強冰球射門訓練,現從甲、乙兩隊中各選出5名球員,并分別將他們依次編號為1,2,3,4,5進行射門訓練,他們的進球次數如折線圖所示,則在這次訓練中以下說法正確的是()A.甲隊球員進球的中位數比乙隊大 B.乙隊球員進球的中位數比甲隊大C.乙隊球員進球水平比甲隊穩(wěn)定 D.甲隊球員進球數的極差比乙隊小11.下列數列是遞增數列的是()A. B.C. D.12.函數在上單調遞增,則k的取值范圍是()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某中學高一年級有420人,高二年級有460人,高三年級有500人,用分層抽樣的方法抽取部分樣本,若從高一年級抽取21人,則從高三年級抽取的人數是__________14.數列滿足,則_______________.15.已知直線與拋物線相交于A,B兩點,且,則拋物線C的準線方程為___________.16.已知拋物線的焦點F為,過點F的直線交該拋物線的準線于點A,與該拋物線的一個交點為B,且,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設數列的前項和為,已知,且.(1)證明:數列為等比數列;(2)若,是否存在正整數,使得對任意恒成立?若存在、求的值;若不存在,說明理由.18.(12分)已知兩個定點,,動點滿足,設動點的軌跡為曲線,直線:(1)求曲線的軌跡方程;(2)若與曲線交于不同的、兩點,且(為坐標原點),求直線的斜率;19.(12分)已知等比數列滿足,(1)求數列通項公式;(2)記,求數列的前n項和20.(12分)在平面直角坐標系中,已知點,,點滿足,記點的軌跡為.(1)求的方程;(2)已知,是經過圓上一點且與相切的兩條直線,斜率分別為,,直線的斜率為,求證:為定值.21.(12分)已知橢圓與直線相切,點G為橢圓上任意一點,,,且的最大值為3(1)求橢圓C的標準方程;(2)設直線與橢圓C交于不同兩點E,F,點O為坐標原點,且,當的面積取最大值時,求的取值范圍22.(10分)2021年10月16日,搭載“神舟十三號”的火箭發(fā)射升空,有很多民眾通過手機、電視等方式觀看有關新聞.某機構將關注這件事的時間在2小時以上的人稱為“天文愛好者”,否則稱為“非天文愛好者”,該機構通過調查,從參與調查的人群中隨機抽取100人進行分析,得到下表(單位:人):天文愛好者非天文愛好者合計女203050男351550合計5545100(1)能否有99%的把握認為“天文愛好者”或“非天文愛好者”與性別有關?(2)現從抽取的女性人群中,按“天文愛好者”和“非天文愛好者”這兩種類型進行分層抽樣抽取5人,然后再從這5人中隨機選出3人,記其中“天文愛好者”的人數為X,求X的分布列和數學期望附:,其中n=a+b+c+d0.100.050.0100.0050.0012.7063.8416.6357.87910.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據空間向量的基本定理及向量的運算法則計算即可得出結果.【詳解】連接,因為,所以,因為,所以,所以,故選:B2、C【解析】根據法向量的定義可判斷出點所構成的圖形.【詳解】是空間一定點,為空間內任一非零向量,滿足條件,所以,構成的圖形是經過點,且以為法向量的平面.故選:C.【點睛】本題考查空間中動點的軌跡,考查了法向量定義的理解,屬于基礎題.3、B【解析】利用向量三角形法則、平行四邊形法則、向量共線定理即可得出【詳解】如圖所示,∵=+,又=,=-,=,∴=+,故選:B4、C【解析】經分析可得,等比數列各項的絕對值單調遞增,將五個數按絕對值的大小排列,計算相鄰兩項的比值,根據等比數列的定義即可求解.【詳解】因為等比數列中有連續(xù)四項在集合中,所以中既有正數項也有負數項,所以公比,因為,所以,且負數項為相隔兩項,所以等比數列各項的絕對值單調遞增,按絕對值排列可得,因,,,,所以是中連續(xù)四項,所以,故選:C.5、D【解析】利用古典概型的概率求解.【詳解】該班同學的疫苗接種完成率為故選:D6、A【解析】由直線與圓相切可得,再利用基本不等式即求.【詳解】由已知可得,,因為直線與圓相切,所以,即,因為,當且僅當時取等號,所以,,所以面積的最小值為1.故選:A7、B【解析】根據空間向量的線性運算即可求解.【詳解】解:由題知,故選:B.8、A【解析】直接求出,,進而求出漸近線方程.【詳解】中,,,所以漸近線方程為,故.故選:A9、B【解析】由數量積的坐標運算求得,令,化為直線方程的斜截式,數形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數得答案【詳解】解:根據題意可得,、,所以,令,由約束條件作出可行域如下圖所示,由得,即,由,得,由圖可知,當直線過時,直線在軸上的截距最小,有最小值為,即,所以故選:B10、C【解析】根據折線圖,求出甲乙中位數、平均數及方差、極差,即可判斷各選項的正誤.【詳解】由題圖,甲隊數據從小到大排序為,乙隊數據從小到大排序為,所以甲乙兩隊的平均數都為5,甲、乙進球中位數相同都為5,A、B錯誤;甲隊方差為,乙隊方差為,即,故乙隊球員進球水平比甲隊穩(wěn)定,C正確.甲隊極差為6,乙隊極差為4,故甲隊極差比乙隊大,D錯誤.故選:C11、C【解析】分別判斷的符號,從而可得出答案.【詳解】解:對于A,,則,所以數列為遞減數列,故A不符合題意;對于B,,則,所以數列為遞減數列,故B不符合題意;對于C,,則,所以數列為遞增數列,故C符合題意;對于D,,則,所以數列遞減數列,故D不符合題意.故選:C.12、A【解析】對函數求導,由于函數在給定區(qū)間上單調遞增,故恒成立.【詳解】由題意可得,,,,.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、25【解析】由條件先求出抽樣比,從而可求出從高三年級抽取的人數.【詳解】由題意抽樣比例:則從高三年級抽取的人數是人故答案為:2514、【解析】利用來求得,進而求得正確答案.【詳解】,,是數列是首項為,公差為的等差數列,所以,所以.故答案為:15、【解析】將直線與拋物線聯立結合拋物線的定義即可求解.【詳解】解:直線與拋物線相交于A,B兩點設,直線與拋物線聯立得:所以所以即解得:所以拋物線C的準線方程為:.故答案為:.16、【解析】作垂直于準線,垂足為,準線與軸交于點,根據已知條件,利用幾何方法,結合拋物線的定義得到答案.【詳解】拋物線的焦點坐標,準線方程,作垂直于準線于,準線與軸交于點,則,∴.∵,∴,由拋物線的定義得,∴.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)由已知條件有,根據等比數列的定義即可證明;(2)由(1)求出及,進而可得,利用二次函數的性質即可求解的最小值,從而可得答案.【小問1詳解】證明:因為,所以,又因為,所以,所以數列是首項為2公比為2的等比數列;【小問2詳解】解:由(1)知,,所以,所以,檢驗時也滿足上式,所以,所以,令,所以,故當即時,取得最小值,所以.18、(1);(2)【解析】(1)設點的坐標為,由,結合兩點間的距離公式,列出式子,可求出軌跡方程;(2)易知,且,可求出到直線的距離,結合點到直線的距離為,可求出直線的斜率【詳解】(1)設點的坐標為,由,可得,整理得,所以所求曲線的軌跡方程為(2)依題意,,且,在△中,,取的中點,連結,則,所以,即點到直線:的距離為,解得,所以所求直線斜率為【點睛】本題考查軌跡方程,考查直線的斜率,考查兩點間的距離公式、點到直線的距離公式的應用,考查學生的計算求解能力,屬于基礎題.19、(1)(2)【解析】(1)通過基本量列方程組可得;(2)由裂項相消法可解【小問1詳解】由題意得解得,所以數列的通項公式為【小問2詳解】由(1)知,則所以20、(1);(2)證明見解析.【解析】(1)根據雙曲線的定義可得答案;(2)設,過點的的切線方程為,聯立此直線與雙曲線的方程消元,然后由可得,即可得到,然后可證明.【小問1詳解】因為,所以點的軌跡是以為焦點的雙曲線的右支,所以,,所以,所以的方程為【小問2詳解】設,則,設過點的切線方程為,聯立可得由可得,所以所以21、(1)(2)【解析】(1)設點,根據題意,得到,根據向量數量積的坐標表示,得到,根據其最小值,求出,即可得出橢圓方程;(2)設,,,聯立直線與橢圓方程,根據韋達定理,由弦長公式,以及點到直線距離公式,求出的面積的最值,得到;得出點的軌跡為橢圓,且點為橢圓的左、右焦點,記,則,得到,根據對勾函數求出最值.【小問1詳解】設點,由題意知,所以:,則,當時,取得最大值,即,故橢圓C的標準方程是【小問2詳解】設,,,則由得,,點O到直線l的距離,對用均值不等式,則:當且僅當即,①,S取得最大值.此時,,,即,代入①式整理得,即點M的軌跡為橢圓且點,為橢圓的左、右焦點,即記,則于是:,由對勾函數的性質:當時,,且,故的取值范圍為22、(1)有(2)分布列見解析,【解析】(1)依題意由列聯表計算出卡方,與參考數值比較,即可判斷;(2)按照分層抽樣得到有2人為“天文愛好者”,有3人為“非天文愛好者”,記“天文愛好者”的人數為X,則X的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論