超級全能生2025屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
超級全能生2025屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
超級全能生2025屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
超級全能生2025屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
超級全能生2025屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

超級全能生2025屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在遞增等比數(shù)列中,為其前n項和.已知,,且,則數(shù)列的公比為()A.3 B.4C.5 D.62.已知橢圓與直線交于A,B兩點,點為線段的中點,則a的值為()A. B.3C. D.3.在區(qū)間內(nèi)隨機取一個數(shù),則方程表示焦點在軸上的橢圓的概率是A. B.C. D.4.已知函數(shù),則曲線在點處的切線與坐標(biāo)軸圍成的三角形的面積是()A B.C. D.5.設(shè)為橢圓上一點,,為左、右焦點,且,則()A.為銳角三角形 B.為鈍角三角形C.為直角三角形 D.,,三點構(gòu)不成三角形6.若拋物線焦點與橢圓的右焦點重合,則的值為A. B.C. D.7.已知向量,,且與互相平行,則的值為()A.-2 B.C. D.8.若橢圓上一點到C的兩個焦點的距離之和為,則()A.1 B.3C.6 D.1或39.已知直線l1:mx-2y+1=0,l2:x-(m-1)y-1=0,則“m=2”是“l(fā)1平行于l2”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件10.已知直線,兩個不同的平面,下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則11.雙曲線的離心率的取值范圍為,則實數(shù)的取值范圍為()A. B.C. D.12.已知,,,執(zhí)行如圖所示的程序框圖,輸出值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某人有樓房一棟,室內(nèi)面積共計,擬分割成兩類房間作為旅游客房,大房間每間面積為,可住游客4名,每名游客每天的住宿費100元;小房間每間面積為,可住游客2名,每名游客每天的住宿費150元;裝修大房間每間需要3萬元,裝修小房間每間需要2萬元.如果他只能籌款25萬元用于裝修,且假定游客能住滿客房,則該人一天能獲得的住宿費的最大值為___________元.14.四棱錐A-BCDE中,底面BCDE為矩形,側(cè)面ABC⊥底面BCDE,側(cè)面ABE⊥底面BCDE,BC=2,CD=4(I)證明:AB⊥面BCDE;(II)若AD=2,求二面角C-AD-E的正弦值15.已知函數(shù)定義域為,值域為,則______16.某位同學(xué)參加物理、化學(xué)、政治科目的等級考,依據(jù)以往成績估算該同學(xué)在物理、化學(xué)、政治科目等級中達(dá)的概率分別為假設(shè)各門科目考試的結(jié)果互不影響,則該同學(xué)等級考至多有1門學(xué)科沒有獲得的概率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓:,,為圓上的動點,若線段的垂直平分線交于點.(1)求動點的軌跡的方程;(2)已知為上一點,過作斜率互為相反數(shù)且不為0的兩條直線,分別交曲線于,,求的取值范圍.18.(12分)已知二次函數(shù).(1)若時,不等式恒成立,求實數(shù)的取值范圍.(2)解關(guān)于的不等式(其中).19.(12分)設(shè)數(shù)列的前n項和為,且,數(shù)列(1)求和的通項公式;(2)設(shè)數(shù)列的前n項和為,證明:20.(12分)如圖,四邊形是矩形,平面平面,為中點,,,(1)證明:平面平面;(2)求二面角的余弦值21.(12分)在四棱錐中,底面ABCD是矩形,點E是線段PA的中點.(1)求證:平面EBD;(2)若是等邊三角形,,平面平面ABCD,求點E到平面PDB的距離.22.(10分)新型冠狀病毒的傳染主要是人與人之間進(jìn)行傳播,感染人群年齡大多數(shù)是歲以上人群.該病毒進(jìn)入人體后有潛伏期.潛伏期是指病原體侵入人體至最早出現(xiàn)臨床癥狀的這段時間.潛伏期越長,感染到他人的可能性越高.現(xiàn)對個病例的潛伏期(單位:天)進(jìn)行調(diào)查,統(tǒng)計發(fā)現(xiàn)潛伏期平均數(shù)為,方差為.如果認(rèn)為超過天的潛伏期屬于“長潛伏期”,按照年齡統(tǒng)計樣本,得到下面的列聯(lián)表:年齡/人數(shù)長期潛伏非長期潛伏50歲以上6022050歲及50歲以下4080(1)是否有的把握認(rèn)為“長期潛伏”與年齡有關(guān);(2)假設(shè)潛伏期服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.(i)現(xiàn)在很多省市對入境旅客一律要求隔離天,請用概率知識解釋其合理性;(ii)以題目中的樣本頻率估計概率,設(shè)個病例中恰有個屬于“長期潛伏”的概率是,當(dāng)為何值時,取得最大值.附:0.10.050.0102.7063.8416.635若,則,,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由已知結(jié)合等比數(shù)列的性質(zhì)可求出、,然后結(jié)合等比數(shù)列的求和公式求解即可.【詳解】解:由題意得:是遞增等比數(shù)列又,,故故選:B2、A【解析】先聯(lián)立直線和橢圓的方程,結(jié)合中點公式及點可求a的值.【詳解】設(shè),聯(lián)立,得,,因為點為線段的中點,所以,即,解得,因為,所以.故選:A.3、D【解析】若方程表示焦點在軸上的橢圓,則,解得,,故方程表示焦點在軸上的橢圓的概率是,故選D.4、B【解析】根據(jù)導(dǎo)數(shù)的幾何意義,求出切線方程,求出切線和橫截距a和縱截距b,面積為【詳解】由題意可得,所以,則所求切線方程為令,得;令,得故所求三角形的面積為故選:B5、D【解析】根據(jù)橢圓方程求出,然后結(jié)合橢圓定義和已知條件求出并求出,進(jìn)而判斷答案.【詳解】由題意可知,,由橢圓的定義可知,而,聯(lián)立方程解得,且,則6+2=8,即不構(gòu)成三角形.故選:D.6、D【解析】解:橢圓的右焦點為(2,0),所以拋物線的焦點為(2,0),則,故選D7、A【解析】應(yīng)用空間向量坐標(biāo)的線性運算求、的坐標(biāo),根據(jù)空間向量平行有,即可求的值.【詳解】由題設(shè),,,∵與互相平行,∴且,則,可得.故選:A8、B【解析】討論焦點的位置利用橢圓定義可得答案.【詳解】若,則由得(舍去);若,則由得故選:B.9、C【解析】利用兩直線平行的等價條件求得m,再結(jié)合充分必要條件進(jìn)行判斷即可.【詳解】由直線l1平行于l2得-m(m-1)=1×(-2),得m=2或m=-1,經(jīng)驗證,當(dāng)m=-1時,直線l1與l2重合,舍去,所以“m=2”是“l(fā)1平行于l2”的充要條件,故選C.【點睛】本題考查兩直線平行的條件,準(zhǔn)確計算是關(guān)鍵,注意充分必要條件的判斷是基礎(chǔ)題10、A【解析】根據(jù)線面、面面位置關(guān)系有關(guān)知識對選項逐一分析,由此確定正確選項.【詳解】對于A選項,根據(jù)面面垂直的判定定理可知,A選項正確,對于B選項,當(dāng),時,和可能相交,B選項錯誤,對于C選項,當(dāng),時,可能含于,C選項錯誤,對于D選項,當(dāng),時,可能含于,D選項錯誤.故選:A11、C【解析】分析可知,利用雙曲線的離心率公式可得出關(guān)于的不等式,即可解得實數(shù)的取值范圍.【詳解】由題意有,,則,解得:故選:C.12、A【解析】模擬程序運行可得程序框圖的功能是計算并輸出三個數(shù)中的最小數(shù),計算三個數(shù)判斷作答.【詳解】模擬程序運行可得程序框圖的功能是計算并輸出三個數(shù)中的最小數(shù),因,,,則,不成立,則,不成立,則,所以應(yīng)輸出的x值為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、3600【解析】先設(shè)分割大房間為間,小房間為間,收益為元,列出約束條件,再根據(jù)約束條件畫出可行域,設(shè),再利用的幾何意義求最值,只需求出直線過可行域內(nèi)的整數(shù)點時,從而得到值即可【詳解】解:設(shè)裝修大房間間,小房間間,收益為萬元,則,目標(biāo)函數(shù),由,解得畫出可行域,得到目標(biāo)函數(shù)過點時,有最大值,故應(yīng)隔出大房間3間和小房間8間,每天能獲得最大的房租收益最大,且為3600元故答案為:360014、(Ⅰ)詳見解析;(Ⅱ).【解析】(Ⅰ)推導(dǎo)出BE⊥BC,從而BE⊥平面ABC,進(jìn)而BE⊥AB,由面ABE⊥面BCDE,得AB⊥BC,由此能證明AB⊥面BCDE(Ⅱ)以B為原點,所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角C﹣AD﹣E的正弦值【詳解】由側(cè)面底面,且交線為,底面為矩形所以平面,又平面,所以由面面,同理可證,又面在底面中,,由面,故,以為原點,所在直線分別為軸建立空間直角坐標(biāo)系,則,設(shè)平面的法向量,則,取所以平面的法向量,同理可求得平面的法向量.設(shè)二面角的平面角為,則故所求二面角的正弦值為.【點睛】本題考查線面垂直的證明,考查二面角的正弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,考查函數(shù)與方程思想,是中檔題15、3【解析】根據(jù)定義域和值域,結(jié)合余弦函數(shù)的圖像與性質(zhì)即可求得的值,進(jìn)而得解.【詳解】因為,由余弦函數(shù)的圖像與性質(zhì)可得,則,由值域為可得,所以,故答案為:3.【點睛】本題考查了余弦函數(shù)圖像與性質(zhì)的簡單應(yīng)用,屬于基礎(chǔ)題.16、【解析】考慮3門或者2門兩種情況,計算概率得到答案.【詳解】.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)動點的軌跡的方程為;(2)的取值范圍.【解析】(1)由條件線段的垂直平分線交于點可得,由此可得,根據(jù)橢圓的定義可得點的軌跡為橢圓,結(jié)合橢圓的標(biāo)準(zhǔn)方程求動點的軌跡的方程;(2)由(1)可求點坐標(biāo),設(shè)直線的方程為,,聯(lián)立方程組化簡可得,,由直線,的斜率互為相反數(shù)可得的值,再由弦長公式求的長,再求其范圍.【小問1詳解】由題知故.即即在以為焦點且長軸為4的橢圓上則動點的軌跡的方程為:;【小問2詳解】故即.設(shè):,聯(lián)立(*),,∴,,又則:即若,則過,不符合題意故,∴,故18、(1);(2)答案見解析.【解析】(1)結(jié)合分離常數(shù)法、基本不等式求得的取值范圍.(2)將原不等式轉(zhuǎn)化為,對進(jìn)行分類討論,由此求得不等式的解集.【詳解】(1)不等式即為:,當(dāng)時,可變形為:,即.又,當(dāng)且僅當(dāng),即時,等號成立,,即.實數(shù)的取值范圍是:.(2)不等式,即,等價于,即,①當(dāng)時,不等式整理為,解得:;當(dāng)時,方程的兩根為:,.②當(dāng)時,可得,解不等式得:或;③當(dāng)時,因為,解不等式得:;④當(dāng)時,因為,不等式的解集為;⑤當(dāng)時,因為,解不等式得:;綜上所述,不等式的解集為:①當(dāng)時,不等式解集為;②當(dāng)時,不等式解集為;③當(dāng)時,不等式解集為;④當(dāng)時,不等式解集為;⑤當(dāng)時,不等式解集為.19、(1),(2)證明見解析【解析】(1)根據(jù)可得,從而可得;(2)利用錯位相減法可得,從而可得,又,即可證明不等式成立.【小問1詳解】解:∵,∴當(dāng)時,,當(dāng)時,,∴,經(jīng)檢驗,也符合,∴,;【小問2詳解】證明:因為,∴,∴∴,又∵,∴,所以20、(1)證明見解析;(2)【解析】(1)利用面面垂直的性質(zhì),證得平面,進(jìn)而可得,平面即可得證;(2)在平面ABC內(nèi)過點A作Ax⊥AB,以A為原點建立空間直角坐標(biāo)系,借助空間向量而得解.【詳解】(1)因為,為中點,所以,因為是矩形,所以,因為平面平面,平面平面,平面,所以平面,因為平面,所以,又,平面,,所以平面,又平面,所以平面平面;(2)在平面ABC內(nèi)過點A作Ax⊥AB,由(1)知,平面,故以點A為坐標(biāo)原點,分別以,,的方向為軸,軸,軸的正方向,建立空間直角坐標(biāo)系,如圖:則,,,,,則,所以,,,,由(1)知,為平面的一個法向量,設(shè)平面的法向量為,則,即,令,則,,所以,所以,因為二面角為銳角,則二面角的余弦值為.【點睛】思路點睛:二面角大小求解時要注意結(jié)合實際圖形判斷所求角是銳角還是鈍角21、(1)見解析(2)【解析】(1)連接交于點,連接,由中位線定理結(jié)合線面平行的判定證明即可;(2)由得出點到平面的距離,再由是的中點,得出點到平面的距離.【小問1詳解】連接交于點,連接.因為分別是的中點,所以.又平面EBD,平面EBD,所以平面EBD;【小問2詳解】過點作的垂線,垂足為,連接.因為平面平面ABCD,平面平面ABCD,所以平面ABCD,所以,設(shè)點到平面的距離為因為,所以,因為點是的中點,所以點到平面的距離為.22、(1)有;(2)(i)答案見解析;(ii)250.【解析】(1)根據(jù)列聯(lián)表中的數(shù)據(jù),利用求得,與臨界表值對比下結(jié)論;(2)(ⅰ)根據(jù),利用小概率事件判斷;(ⅱ)易得一個患者屬于“長潛伏期”的概率是,進(jìn)而得到,然后判斷其單調(diào)性求解.【詳解】(1)依題意有,由于,故有的把握認(rèn)為“

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論