版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年陜西省四校全國高三模擬考(二)全國卷數(shù)學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.是平面上的一定點,是平面上不共線的三點,動點滿足,,則動點的軌跡一定經(jīng)過的()A.重心 B.垂心 C.外心 D.內(nèi)心2.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.3.已知,,,則的最小值為()A. B. C. D.4.已知是雙曲線的左、右焦點,是的左、右頂點,點在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.5.若復數(shù),,其中是虛數(shù)單位,則的最大值為()A. B. C. D.6.若執(zhí)行如圖所示的程序框圖,則輸出的值是()A. B. C. D.47.已知函數(shù)為奇函數(shù),且,則()A.2 B.5 C.1 D.38.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件9.二項式的展開式中,常數(shù)項為()A. B.80 C. D.16010.復數(shù),若復數(shù)在復平面內(nèi)對應的點關于虛軸對稱,則等于()A. B. C. D.11.關于的不等式的解集是,則關于的不等式的解集是()A. B.C. D.12.某幾何體的三視圖如圖所示,三視圖是腰長為1的等腰直角三角形和邊長為1的正方形,則該幾何體中最長的棱長為().A. B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.若一個正四面體的棱長為1,四個頂點在同一個球面上,則此球的表面積為_________.14.已知函數(shù),且,,使得,則實數(shù)m的取值范圍是______.15.設為偶函數(shù),且當時,;當時,.關于函數(shù)的零點,有下列三個命題:①當時,存在實數(shù)m,使函數(shù)恰有5個不同的零點;②若,函數(shù)的零點不超過4個,則;③對,,函數(shù)恰有4個不同的零點,且這4個零點可以組成等差數(shù)列.其中,正確命題的序號是_______.16.如圖,四面體的一條棱長為,其余棱長均為1,記四面體的體積為,則函數(shù)的單調(diào)增區(qū)間是____;最大值為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數(shù)列中,,是和的等差中項.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和.18.(12分)在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點。(1)寫出直線l的普通方程和曲線C的直角坐標方程:(2)若成等比數(shù)列,求a的值。19.(12分)如圖,已知,分別是正方形邊,的中點,與交于點,,都垂直于平面,且,,是線段上一動點.(1)當平面,求的值;(2)當是中點時,求四面體的體積.20.(12分)設點,分別是橢圓的左、右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,動直線與橢圓有且僅有一個公共點,點,是直線上的兩點,且,,求四邊形面積的最大值.21.(12分)語音交互是人工智能的方向之一,現(xiàn)在市場上流行多種可實現(xiàn)語音交互的智能音箱.主要代表有小米公司的“小愛同學”智能音箱和阿里巴巴的“天貓精靈”智能音箱,它們可以通過語音交互滿足人們的部分需求.某經(jīng)銷商為了了解不同智能音箱與其購買者性別之間的關聯(lián)程度,從某地區(qū)隨機抽取了100名購買“小愛同學”和100名購買“天貓精靈”的人,具體數(shù)據(jù)如下:“小愛同學”智能音箱“天貓精靈”智能音箱合計男4560105女554095合計100100200(1)若該地區(qū)共有13000人購買了“小愛同學”,有12000人購買了“天貓精靈”,試估計該地區(qū)購買“小愛同學”的女性比購買“天貓精靈”的女性多多少人?(2)根據(jù)列聯(lián)表,能否有95%的把握認為購買“小愛同學”、“天貓精靈”與性別有關?附:0.100.050.0250.010.0050.0012.7063.8415.0246.6357.87910.82822.(10分)下表是某公司2018年5~12月份研發(fā)費用(百萬元)和產(chǎn)品銷量(萬臺)的具體數(shù)據(jù):月份56789101112研發(fā)費用(百萬元)2361021131518產(chǎn)品銷量(萬臺)1122.563.53.54.5(Ⅰ)根據(jù)數(shù)據(jù)可知與之間存在線性相關關系,求出與的線性回歸方程(系數(shù)精確到0.01);(Ⅱ)該公司制定了如下獎勵制度:以(單位:萬臺)表示日銷售,當時,不設獎;當時,每位員工每日獎勵200元;當時,每位員工每日獎勵300元;當時,每位員工每日獎勵400元.現(xiàn)已知該公司某月份日銷售(萬臺)服從正態(tài)分布(其中是2018年5-12月產(chǎn)品銷售平均數(shù)的二十分之一),請你估計每位員工該月(按30天計算)獲得獎勵金額總數(shù)大約多少元.參考數(shù)據(jù):,,,,參考公式:相關系數(shù),其回歸直線中的,若隨機變量服從正態(tài)分布,則,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
解出,計算并化簡可得出結(jié)論.【詳解】λ(),∴,∴,即點P在BC邊的高上,即點P的軌跡經(jīng)過△ABC的垂心.故選B.【點睛】本題考查了平面向量的數(shù)量積運算在幾何中的應用,根據(jù)條件中的角計算是關鍵.2.D【解析】
由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當時最小,設正方體的棱長為,得,進一步求出四面體的體積即可.【詳解】解:如圖,
∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,
∴
設正方體的棱長為,則,∴.
取,連接,則共面,在中,設到的距離為,
設到平面的距離為,
.
故選D.【點睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.3.B【解析】,選B4.D【解析】
根據(jù)為等腰三角形,可求出點P的坐標,又由的斜率為可得出關系,即可求出漸近線斜率得解.【詳解】如圖,因為為等腰三角形,,所以,,,又,,解得,所以雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于中檔題.5.C【解析】
由復數(shù)的幾何意義可得表示復數(shù),對應的兩點間的距離,由兩點間距離公式即可求解.【詳解】由復數(shù)的幾何意義可得,復數(shù)對應的點為,復數(shù)對應的點為,所以,其中,故選C【點睛】本題主要考查復數(shù)的幾何意義,由復數(shù)的幾何意義,將轉(zhuǎn)化為兩復數(shù)所對應點的距離求值即可,屬于基礎題型.6.D【解析】
模擬程序運行,觀察變量值的變化,得出的變化以4為周期出現(xiàn),由此可得結(jié)論.【詳解】;如此循環(huán)下去,當時,,此時不滿足,循環(huán)結(jié)束,輸出的值是4.故選:D.【點睛】本題考查程序框圖,考查循環(huán)結(jié)構.解題時模擬程序運行,觀察變量值的變化,確定程序功能,可得結(jié)論.7.B【解析】
由函數(shù)為奇函數(shù),則有,代入已知即可求得.【詳解】.故選:.【點睛】本題考查奇偶性在抽象函數(shù)中的應用,考查學生分析問題的能力,難度較易.8.B【解析】
先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據(jù)此可知“”是“”的必要不充分條件.故選:B【點睛】本題考查了必要不充分條件的判定,考查了學生數(shù)學運算,邏輯推理能力,屬于基礎題.9.A【解析】
求出二項式的展開式的通式,再令的次數(shù)為零,可得結(jié)果.【詳解】解:二項式展開式的通式為,令,解得,則常數(shù)項為.故選:A.【點睛】本題考查二項式定理指定項的求解,關鍵是熟練應用二項展開式的通式,是基礎題.10.A【解析】
先通過復數(shù)在復平面內(nèi)對應的點關于虛軸對稱,得到,再利用復數(shù)的除法求解.【詳解】因為復數(shù)在復平面內(nèi)對應的點關于虛軸對稱,且復數(shù),所以所以故選:A【點睛】本題主要考查復數(shù)的基本運算和幾何意義,屬于基礎題.11.A【解析】
由的解集,可知及,進而可求出方程的解,從而可求出的解集.【詳解】由的解集為,可知且,令,解得,,因為,所以的解集為,故選:A.【點睛】本題考查一元一次不等式、一元二次不等式的解集,考查學生的計算求解能力與推理能力,屬于基礎題.12.B【解析】
首先由三視圖還原幾何體,進一步求出幾何體的棱長.【詳解】解:根據(jù)三視圖還原幾何體如圖所示,所以,該四棱錐體的最長的棱長為.故選:B.【點睛】本題主要考查由三視圖還原幾何體,考查運算能力和推理能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
將四面體補成一個正方體,通過正方體的對角線與球的半徑的關系,得到球的半徑,利用球的表面積公式,即可求解.【詳解】如圖所示,將正四面體補形成一個正方體,則正四面體的外接球與正方體的外接球表示同一個球,因為正四面體的棱長為1,所以正方體的棱長為,設球的半徑為,因為球的直徑是正方體的對角線,即,解得,所以球的表面積為.【點睛】本題主要考查了有關求得組合體的結(jié)構特征,以及球的表面積的計算,其中巧妙構造正方體,利用正方體的外接球的直徑等于正方體的對角線長,得到球的半徑是解答的關鍵,著重考查了空間想象能力,以及運算與求解能力,屬于基礎題.14.【解析】
根據(jù)條件轉(zhuǎn)化為函數(shù)在上的值域是函數(shù)在上的值域的子集;分別求值域即可得到結(jié)論.【詳解】解:依題意,,即函數(shù)在上的值域是函數(shù)在上的值域的子集.因為在上的值域為()或(),在上的值域為,故或,解得故答案為:.【點睛】本題考查了分段函數(shù)的值域求參數(shù)的取值范圍,屬于中檔題.15.①②③【解析】
根據(jù)偶函數(shù)的圖象關于軸對稱,利用已知中的條件作出偶函數(shù)的圖象,利用圖象對各個選項進行判斷即可.【詳解】解:當時又因為為偶函數(shù)可畫出的圖象,如下所示:可知當時有5個不同的零點;故①正確;若,函數(shù)的零點不超過4個,即,與的交點不超過4個,時恒成立又當時,在上恒成立在上恒成立由于偶函數(shù)的圖象,如下所示:直線與圖象的公共點不超過個,則,故②正確;對,偶函數(shù)的圖象,如下所示:,使得直線與恰有4個不同的交點點,且相鄰點之間的距離相等,故③正確.故答案為:①②③【點睛】本題考查函數(shù)方程思想,數(shù)形結(jié)合思想,屬于難題.16.(或?qū)懗?【解析】試題分析:設,取中點則,因此,所以,因為在單調(diào)遞增,最大值為所以單調(diào)增區(qū)間是,最大值為考點:函數(shù)最值,函數(shù)單調(diào)區(qū)間三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)用等比數(shù)列的首項和公比分別表示出已知條件,解方程組即可求得公比,代入等比數(shù)列的通項公式即可求得結(jié)果;(2)把(1)中求得的結(jié)果代入bn=an?log2an,求出bn,利用錯位相減法求出Tn.【詳解】(1)設數(shù)列的公比為,由題意知:,∴,即.∴,即.(2),∴.①.②①-②得∴.【點睛】本題考查等比數(shù)列的通項公式和等差中項的概念以及錯位相減法求和,考查運算能力,屬中檔題.18.(1)l的普通方程;C的直角坐標方程;(2).【解析】
(1)利用極坐標與直角坐標的互化公式即可把曲線的極坐標方程化為直角坐標方程,利用消去參數(shù)即可得到直線的直角坐標方程;(2)將直線的參數(shù)方程,代入曲線的方程,利用參數(shù)的幾何意義即可得出,從而建立關于的方程,求解即可.【詳解】(1)由直線l的參數(shù)方程消去參數(shù)t得,,即為l的普通方程由,兩邊乘以得為C的直角坐標方程.(2)將代入拋物線得由已知成等比數(shù)列,即,,,整理得(舍去)或.【點睛】熟練掌握極坐標與直角坐標的互化公式、方程思想、直線的參數(shù)方程中的參數(shù)的幾何意義是解題的關鍵.19.(1).(2)【解析】
(1)利用線面垂直的性質(zhì)得出,進而得出,利用相似三角形的性質(zhì),得出,從而得出的值;(2)利用線面垂直的判定定理得出平面,進而得出四面體的體積,計算出,,即可得出四面體的體積.【詳解】(1)因為平面,平面,所以又因為,都垂直于平面,所以又,分別是正方形邊,的中點,且,所以.(2)因為,分別是正方形邊,的中點,所以又因為,都垂直于平面,平面,所以因為平面,所以平面所以,四面體的體積,所以.【點睛】本題主要考查了線面垂直的性質(zhì)定理的應用,以及求棱錐的體積,屬于中檔題.20.(1);(2)2.【解析】
(1)利用的最小值為1,可得,,即可求橢圓的方程;(2)將直線的方程代入橢圓的方程中,得到關于的一元二次方程,由直線與橢圓僅有一個公共點知,即可得到,的關系式,利用點到直線的距離公式即可得到,.當時,設直線的傾斜角為,則,即可得到四邊形面積的表達式,利用基本不等式的性質(zhì),結(jié)合當時,四邊形是矩形,即可得出的最大值.【詳解】(1)設,則,,,,由題意得,,橢圓的方程為;
(2)將直線的方程代入橢圓的方程中,得.
由直線與橢圓僅有一個公共點知,,化簡得:.
設,,當時,設直線的傾斜角為,則,,,,∴當時,,,.當時,四邊形是矩形,.
所以四邊形面積的最大值為2.【點睛】本題主要考查橢圓的方程與性質(zhì)、直線方程、直線與橢圓的位置關系、向量知識、二次函數(shù)的單調(diào)性、基本不等式的性質(zhì)等基礎知識,考查運算能力、推理論證以及分析問題、解決問題的能力,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化思想.21.(1)多2350人;(2)有95%的把握認為購買“小愛同學”、“天貓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學生課間健身課件視頻
- 中級消防監(jiān)控室培訓課件
- 三年級科學上冊第二單元人與植物教材說明首師大版
- 2022年東北電力大學自考英語(二)練習題(附答案解析)
- 教學課件制作培訓總結(jié)
- 安全鏈控制系統(tǒng)課件
- 指南培訓課件
- 上半年大班第二學期班務參考計劃
- 人教部編版二年級下冊所有必須背誦的古詩和課文
- 大班交通安全日課件
- 《MATLAB編程及應用》全套教學課件
- 《銷售技巧培訓》課件
- 人教版八年級上冊數(shù)學期末考試試卷及答案
- 配電箱巡檢表
- 網(wǎng)頁設計與制作案例實戰(zhàn)教程課件 第13章 綜合實戰(zhàn)案例
- 子長市長征文化運動公園項目社會穩(wěn)定風險評估報告
- 抖音本地生活培訓
- 浙教版七年級科學上冊期末綜合素質(zhì)檢測含答案
- 2024年北京市離婚協(xié)議書樣本
- 2019年海南省公務員考試申論真題(乙類)
- 北京郵電大學《操作系統(tǒng)》2022-2023學年期末試卷
評論
0/150
提交評論