2023-2024學年山東省泰安市長城中學高三高考前適應性考試數(shù)學試題_第1頁
2023-2024學年山東省泰安市長城中學高三高考前適應性考試數(shù)學試題_第2頁
2023-2024學年山東省泰安市長城中學高三高考前適應性考試數(shù)學試題_第3頁
2023-2024學年山東省泰安市長城中學高三高考前適應性考試數(shù)學試題_第4頁
2023-2024學年山東省泰安市長城中學高三高考前適應性考試數(shù)學試題_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年山東省泰安市長城中學高三高考前適應性考試數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為虛數(shù)單位,復數(shù)滿足,則復數(shù)在復平面內(nèi)對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知函數(shù),若關(guān)于的方程有4個不同的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.3.已知函數(shù),其中表示不超過的最大正整數(shù),則下列結(jié)論正確的是()A.的值域是 B.是奇函數(shù)C.是周期函數(shù) D.是增函數(shù)4.下列函數(shù)中,圖象關(guān)于軸對稱的為()A. B.,C. D.5.以下四個命題:①兩個隨機變量的線性相關(guān)性越強,相關(guān)系數(shù)的絕對值越接近1;②在回歸分析中,可用相關(guān)指數(shù)的值判斷擬合效果,越小,模型的擬合效果越好;③若數(shù)據(jù)的方差為1,則的方差為4;④已知一組具有線性相關(guān)關(guān)系的數(shù)據(jù),其線性回歸方程,則“滿足線性回歸方程”是“,”的充要條件;其中真命題的個數(shù)為()A.4 B.3 C.2 D.16.隨著人民生活水平的提高,對城市空氣質(zhì)量的關(guān)注度也逐步增大,下圖是某城市月至月的空氣質(zhì)量檢測情況,圖中一、二、三、四級是空氣質(zhì)量等級,一級空氣質(zhì)量最好,一級和二級都是質(zhì)量合格天氣,下面敘述不正確的是()A.1月至8月空氣合格天數(shù)超過天的月份有個B.第二季度與第一季度相比,空氣達標天數(shù)的比重下降了C.8月是空氣質(zhì)量最好的一個月D.6月份的空氣質(zhì)量最差.7.已知函數(shù)的圖像上有且僅有四個不同的關(guān)于直線對稱的點在的圖像上,則的取值范圍是()A. B. C. D.8.已知正方體的棱長為,,,分別是棱,,的中點,給出下列四個命題:①;②直線與直線所成角為;③過,,三點的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個數(shù)為()A. B. C. D.9.下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是()A. B.C. D.10.下列判斷錯誤的是()A.若隨機變量服從正態(tài)分布,則B.已知直線平面,直線平面,則“”是“”的充分不必要條件C.若隨機變量服從二項分布:,則D.是的充分不必要條件11.已知命題:R,;命題:R,,則下列命題中為真命題的是()A. B. C. D.12.若θ是第二象限角且sinθ=,則=A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)等差數(shù)列的前項和為,若,,則數(shù)列的公差________,通項公式________.14.在棱長為6的正方體中,是的中點,點是面,所在平面內(nèi)的動點,且滿足,則三棱錐的體積的最大值是__________.15.某公園劃船收費標準如表:某班16名同學一起去該公園劃船,若每人劃船的時間均為1小時,每只租船必須坐滿,租船最低總費用為______元,租船的總費用共有_____種可能.16.設(shè),滿足約束條件,則的最大值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為貫徹十九大報告中“要提供更多優(yōu)質(zhì)生態(tài)產(chǎn)品以滿足人民日益增長的優(yōu)美生態(tài)環(huán)境需要”的要求,某生物小組通過抽樣檢測植物高度的方法來監(jiān)測培育的某種植物的生長情況.現(xiàn)分別從、、三塊試驗田中各隨機抽取株植物測量高度,數(shù)據(jù)如下表(單位:厘米):組組組假設(shè)所有植株的生長情況相互獨立.從、、三組各隨機選株,組選出的植株記為甲,組選出的植株記為乙,組選出的植株記為丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有數(shù)據(jù)的平均數(shù)記為.從、、三塊試驗田中分別再隨機抽取株該種植物,它們的高度依次是、、(單位:厘米).這個新數(shù)據(jù)與表格中的所有數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,試比較和的大?。ńY(jié)論不要求證明)18.(12分)如圖,在平面直角坐標系xOy中,已知橢圓的離心率為,且過點.為橢圓的右焦點,為橢圓上關(guān)于原點對稱的兩點,連接分別交橢圓于兩點.⑴求橢圓的標準方程;⑵若,求的值;⑶設(shè)直線,的斜率分別為,,是否存在實數(shù),使得,若存在,求出的值;若不存在,請說明理由.19.(12分)已知函數(shù),其中.(1)函數(shù)在處的切線與直線垂直,求實數(shù)的值;(2)若函數(shù)在定義域上有兩個極值點,且.①求實數(shù)的取值范圍;②求證:.20.(12分)已知函數(shù)(1)若函數(shù)有且只有一個零點,求實數(shù)的取值范圍;(2)若函數(shù)對恒成立,求實數(shù)的取值范圍.21.(12分)設(shè)函數(shù).(1)解不等式;(2)記的最大值為,若實數(shù)、、滿足,求證:.22.(10分)某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品不合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽,要求在交付用戶前每件產(chǎn)品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產(chǎn)品,且每件產(chǎn)品檢驗合格與否相互獨立.若每件產(chǎn)品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產(chǎn)品每個一組進行分組檢驗,如果某一組產(chǎn)品檢驗合格,則說明該組內(nèi)產(chǎn)品均合格,若檢驗不合格,則說明該組內(nèi)有不合格產(chǎn)品,再對該組內(nèi)每一件產(chǎn)品單獨進行檢驗,如此,每一組產(chǎn)品只需檢驗次或次.設(shè)該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗次數(shù)為.(1)求的分布列及其期望;(2)(i)試說明,當越小時,該方案越合理,即所需平均檢驗次數(shù)越少;(ii)當時,求使該方案最合理時的值及件該產(chǎn)品的平均檢驗次數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

求出復數(shù),得出其對應點的坐標,確定所在象限.【詳解】由題意,對應點坐標為,在第二象限.故選:B.【點睛】本題考查復數(shù)的幾何意義,考查復數(shù)的除法運算,屬于基礎(chǔ)題.2.C【解析】

求導,先求出在單增,在單減,且知設(shè),則方程有4個不同的實數(shù)根等價于方程在上有兩個不同的實數(shù)根,再利用一元二次方程根的分布條件列不等式組求解可得.【詳解】依題意,,令,解得,,故當時,,當,,且,故方程在上有兩個不同的實數(shù)根,故,解得.故選:C.【點睛】本題考查確定函數(shù)零點或方程根個數(shù).其方法:(1)構(gòu)造法:構(gòu)造函數(shù)(易求,可解),轉(zhuǎn)化為確定的零點個數(shù)問題求解,利用導數(shù)研究該函數(shù)的單調(diào)性、極值,并確定定義區(qū)間端點值的符號(或變化趨勢)等,畫出的圖象草圖,數(shù)形結(jié)合求解;(2)定理法:先用零點存在性定理判斷函數(shù)在某區(qū)間上有零點,然后利用導數(shù)研究函數(shù)的單調(diào)性、極值(最值)及區(qū)間端點值符號,進而判斷函數(shù)在該區(qū)間上零點的個數(shù).3.C【解析】

根據(jù)表示不超過的最大正整數(shù),可構(gòu)建函數(shù)圖象,即可分別判斷值域、奇偶性、周期性、單調(diào)性,進而下結(jié)論.【詳解】由表示不超過的最大正整數(shù),其函數(shù)圖象為選項A,函數(shù),故錯誤;選項B,函數(shù)為非奇非偶函數(shù),故錯誤;選項C,函數(shù)是以1為周期的周期函數(shù),故正確;選項D,函數(shù)在區(qū)間上是增函數(shù),但在整個定義域范圍上不具備單調(diào)性,故錯誤.故選:C【點睛】本題考查對題干的理解,屬于函數(shù)新定義問題,可作出圖象分析性質(zhì),屬于較難題.4.D【解析】

圖象關(guān)于軸對稱的函數(shù)為偶函數(shù),用偶函數(shù)的定義及性質(zhì)對選項進行判斷可解.【詳解】圖象關(guān)于軸對稱的函數(shù)為偶函數(shù);A中,,,故為奇函數(shù);B中,的定義域為,不關(guān)于原點對稱,故為非奇非偶函數(shù);C中,由正弦函數(shù)性質(zhì)可知,為奇函數(shù);D中,且,,故為偶函數(shù).故選:D.【點睛】本題考查判斷函數(shù)奇偶性.判斷函數(shù)奇偶性的兩種方法:(1)定義法:對于函數(shù)的定義域內(nèi)任意一個都有,則函數(shù)是奇函數(shù);都有,則函數(shù)是偶函數(shù)(2)圖象法:函數(shù)是奇(偶)函數(shù)函數(shù)圖象關(guān)于原點(軸)對稱.5.C【解析】

①根據(jù)線性相關(guān)性與r的關(guān)系進行判斷,

②根據(jù)相關(guān)指數(shù)的值的性質(zhì)進行判斷,

③根據(jù)方差關(guān)系進行判斷,

④根據(jù)點滿足回歸直線方程,但點不一定就是這一組數(shù)據(jù)的中心點,而回歸直線必過樣本中心點,可進行判斷.【詳解】①若兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)r的絕對值越接近于1,故①正確;

②用相關(guān)指數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好,故②錯誤;

③若統(tǒng)計數(shù)據(jù)的方差為1,則的方差為,故③正確;

④因為點滿足回歸直線方程,但點不一定就是這一組數(shù)據(jù)的中心點,即,不一定成立,而回歸直線必過樣本中心點,所以當,時,點必滿足線性回歸方程;因此“滿足線性回歸方程”是“,”必要不充分條件.故④錯誤;

所以正確的命題有①③.

故選:C.【點睛】本題考查兩個隨機變量的相關(guān)性,擬合性檢驗,兩個線性相關(guān)的變量間的方差的關(guān)系,以及兩個變量的線性回歸方程,注意理解每一個量的定義,屬于基礎(chǔ)題.6.D【解析】由圖表可知月空氣質(zhì)量合格天氣只有天,月份的空氣質(zhì)量最差.故本題答案選.7.D【解析】

根據(jù)對稱關(guān)系可將問題轉(zhuǎn)化為與有且僅有四個不同的交點;利用導數(shù)研究的單調(diào)性從而得到的圖象;由直線恒過定點,通過數(shù)形結(jié)合的方式可確定;利用過某一點曲線切線斜率的求解方法可求得和,進而得到結(jié)果.【詳解】關(guān)于直線對稱的直線方程為:原題等價于與有且僅有四個不同的交點由可知,直線恒過點當時,在上單調(diào)遞減;在上單調(diào)遞增由此可得圖象如下圖所示:其中、為過點的曲線的兩條切線,切點分別為由圖象可知,當時,與有且僅有四個不同的交點設(shè),,則,解得:設(shè),,則,解得:,則本題正確選項:【點睛】本題考查根據(jù)直線與曲線交點個數(shù)確定參數(shù)范圍的問題;涉及到過某一點的曲線切線斜率的求解問題;解題關(guān)鍵是能夠通過對稱性將問題轉(zhuǎn)化為直線與曲線交點個數(shù)的問題,通過確定直線恒過的定點,采用數(shù)形結(jié)合的方式來進行求解.8.C【解析】

畫出幾何體的圖形,然后轉(zhuǎn)化判斷四個命題的真假即可.【詳解】如圖;連接相關(guān)點的線段,為的中點,連接,因為是中點,可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過,,三點的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點,所以,而,.所以三棱錐的體積為,④正確;故選:.【點睛】本題考查命題的真假的判斷與應用,涉及空間幾何體的體積,直線與平面的位置關(guān)系的應用,平面的基本性質(zhì),是中檔題.9.C【解析】

對選項逐個驗證即得答案.【詳解】對于,,是偶函數(shù),故選項錯誤;對于,,定義域為,在上不是單調(diào)函數(shù),故選項錯誤;對于,當時,;當時,;又時,.綜上,對,都有,是奇函數(shù).又時,是開口向上的拋物線,對稱軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項正確;對于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項錯誤.故選:.【點睛】本題考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.10.D【解析】

根據(jù)正態(tài)分布、空間中點線面的位置關(guān)系、充分條件與必要條件的判斷、二項分布及不等式的性質(zhì)等知識,依次對四個選項加以分析判斷,進而可求解.【詳解】對于選項,若隨機變量服從正態(tài)分布,根據(jù)正態(tài)分布曲線的對稱性,有,故選項正確,不符合題意;對于選項,已知直線平面,直線平面,則當時一定有,充分性成立,而當時,不一定有,故必要性不成立,所以“”是“”的充分不必要條件,故選項正確,不符合題意;對于選項,若隨機變量服從二項分布:,則,故選項正確,不符合題意;對于選項,,僅當時有,當時,不成立,故充分性不成立;若,僅當時有,當時,不成立,故必要性不成立.因而是的既不充分也不必要條件,故選項不正確,符合題意.故選:D【點睛】本題考查正態(tài)分布、空間中點線面的位置關(guān)系、充分條件與必要條件的判斷、二項分布及不等式的性質(zhì)等知識,考查理解辨析能力與運算求解能力,屬于基礎(chǔ)題.11.B【解析】

根據(jù),可知命題的真假,然后對取值,可得命題的真假,最后根據(jù)真值表,可得結(jié)果.【詳解】對命題:可知,所以R,故命題為假命題命題:取,可知所以R,故命題為真命題所以為真命題故選:B【點睛】本題主要考查對命題真假的判斷以及真值表的應用,識記真值表,屬基礎(chǔ)題.12.B【解析】由θ是第二象限角且sinθ=知:,.所以.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】

直接利用等差數(shù)列公式計算得到答案.【詳解】,,解得,,故.故答案為:2;.【點睛】本題考查了等差數(shù)列的基本計算,意在考查學生的計算能力.14.【解析】

根據(jù)與相似,,過作于,利用體積公式求解OP最值,根據(jù)勾股定理得出,,利用函數(shù)單調(diào)性判斷求解即可.【詳解】∵在棱長為6的正方體中,是的中點,點是面所在平面內(nèi)的動點,且滿足,又,∴與相似∴,即,過作于,設(shè),,∴,化簡得:,,根據(jù)函數(shù)單調(diào)性判斷,時,取得最大值36,,在正方體中平面.三棱錐體積的最大值為【點睛】本題考查三角形相似,幾何體體積以及函數(shù)單調(diào)性的綜合應用,難度一般.15.36010【解析】

列出所有租船的情況,分別計算出租金,由此能求出結(jié)果.【詳解】當租兩人船時,租金為:元,當租四人船時,租金為:元,當租1條四人船6條兩人船時,租金為:元,當租2條四人船4條兩人船時,租金為:元,當租3條四人船2條兩人船時,租金為:元,當租1條六人船5條2人船時,租金為:元,當租2條六人船2條2人船時,租金為:元,當租1條六人船1條四人船3條2人船時,租金為:元,當租1條六人船2條四人船1條2人船時,租金為:元,當租2條六人船1條四人船時,租金為:元,綜上,租船最低總費用為360元,租船的總費用共有10種可能.故答案為:360,10.【點睛】本小題主要考查分類討論的數(shù)學思想方法,考查實際應用問題,屬于基礎(chǔ)題.16.29【解析】

由約束條件作出可行域,化目標函數(shù)為以原點為圓心的圓,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.【詳解】由約束條件作出可行域如圖:聯(lián)立,解得,目標函數(shù)是以原點為圓心,以為半徑的圓,由圖可知,此圓經(jīng)過點A時,半徑最大,此時也最大,最大值為.所以本題答案為29.【點睛】線性規(guī)劃問題,首先明確可行域?qū)氖欠忾]區(qū)域還是開放區(qū)域、分界線是實線還是虛線,其次確定目標函數(shù)的幾何意義,是求直線的截距、兩點間距離的平方、直線的斜率、還是點到直線的距離等等,最后結(jié)合圖形確定目標函數(shù)最值取法、值域范圍.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2);(3).【解析】

設(shè)事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、,可得出.(1)設(shè)事件為“丙的高度小于厘米”,可得,且、互斥,利用互斥事件的概率公式可求得結(jié)果;(2)設(shè)事件為“甲的高度大于乙的高度”,列舉出符合題意的基本事件,利用互斥事件的概率加法公式可求得所求事件的概率;(3)根據(jù)題意直接判斷和的大小即可.【詳解】設(shè)事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、.由題意可知,、、、.(1)設(shè)事件為“丙的高度小于厘米”,由題意知,又與互斥,所以事件的概率;(2)設(shè)事件為“甲的高度大于乙的高度”.由題意知.所以事件的概率;(3).【點睛】本題考查概率的求法,考查互斥事件加法公式、相互獨立事件概率乘法公式等基礎(chǔ)知識,考查運算求解能力,是中等題.18.(1)(2)(3)【解析】試題分析:(1);(2)由橢圓對稱性,知,所以,此時直線方程為,故.(3)設(shè),則,通過直線和橢圓方程,解得,,所以,即存在.試題解析:(1)設(shè)橢圓方程為,由題意知:解之得:,所以橢圓方程為:(2)若,由橢圓對稱性,知,所以,此時直線方程為,由,得,解得(舍去),故.(3)設(shè),則,直線的方程為,代入橢圓方程,得,因為是該方程的一個解,所以點的橫坐標,又在直線上,所以,同理,點坐標為,,所以,即存在,使得.19.(1);(2)①;②詳見解析.【解析】

(1)由函數(shù)在處的切線與直線垂直,即可得,對其求導并表示,代入上述方程即可解得答案;(2)①已知要求等價于在上有兩個根,且,即在上有兩個不相等的根,由二次函數(shù)的圖象與性質(zhì)構(gòu)建不等式組,解得答案,最后分析此時單調(diào)性推及極值說明即可;②由①可知,是方程的兩個不等的實根,由韋達定理可表達根與系數(shù)的關(guān)系,進而用含的式子表示,令,對求導分析單調(diào)性,即可知道存在常數(shù)使在上單調(diào)遞減,在上單調(diào)遞增,進而求最值證明不等式成立.【詳解】解:(1)依題意,,,故,所以,據(jù)題意可知,,解得.所以實數(shù)的值為.(2)①因為函數(shù)在定義域上有兩個極值點,且,所以在上有兩個根,且,即在上有兩個不相等的根.所以解得.當時,若或,,,函數(shù)在和上單調(diào)遞增;若,,,函數(shù)在上單調(diào)遞減,故函數(shù)在上有兩個極值點,且.所以,實數(shù)的取值范圍是.②由①可知,是方程的兩個不等的實根,所以其中.故,令,其中.故,令,,在上單調(diào)遞增.由于,,所以存在常數(shù),使得,即,,且當時,,在上單調(diào)遞減;當時,,在上單調(diào)遞增,所以當時,,又,,所以,即,故得證.【點睛】本題考查導數(shù)的幾何意義、兩直線的位置關(guān)系、由極值點個數(shù)求參數(shù)范圍問題,還考查了利用導數(shù)證明不等式成立,屬于難題.20.(1);(2).【解析】

(1)求導得到,討論和兩種情況,計算函數(shù)的單調(diào)性,得到,再討論,,三種情況,計算得到答案.(2)計算得到,討論,兩種情況,分別計算單調(diào)性得到函數(shù)最值,得到答案.【詳解】(1),①當時恒

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論