




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省杭州七縣2025屆高一上數(shù)學(xué)期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的最小正周期為()A. B.C. D.2.四個函數(shù):①;②;③;④的圖象(部分)如下,但順序被打亂,則按照從左到右將圖象對應(yīng)的函數(shù)序號安排正確的一組是()A.④①②③ B.①④②③C.③④②① D.①④③②3.集合中所含元素為A.0,1 B.,1C.,0 D.14.某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人,為了了解該單位職工健康情況,用分層抽樣的方法從中抽取樣本.若樣本中的青年職工為14人,則樣本中的中年職工人數(shù)為()A.10 B.30C.50 D.705.的值是()A B.C. D.6.已知實數(shù)滿足,則函數(shù)的零點所在的區(qū)間是()A. B.C. D.7.若,則a,b,c的大小關(guān)系是()A. B.C. D.8.函數(shù)f(x)=2ax+1–1(a>0,且a≠1)恒過定點A.(–1,–1) B.(–1,1)C.(0,2a–1) D.(0,1)9.已知直線、、與平面、,下列命題正確的是()A.若,則 B.若,則C.若,則 D.若,則10.已知定義在上的偶函數(shù),且當(dāng)時,單調(diào)遞減,則關(guān)于x的不等式的解集是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知sinα+cosα=,α∈(-π,0),則tanα=________.12.已知點是角終邊上一點,且,則的值為__________.13.函數(shù)的圖象一定過定點P,則P點的坐標(biāo)是______14.函數(shù)的最小正周期為,且.當(dāng)時,則函數(shù)的對稱中心__________;若,則值為__________.15.給出下列說法:①和直線都相交的兩條直線在同一個平面內(nèi);②三條兩兩相交的直線一定在同一個平面內(nèi);③有三個不同公共點的兩個平面重合;④兩兩相交且不過同一點的四條直線共面其中正確說法的序號是______16.已知函數(shù)(,且)的圖象恒過定點,且點在冪函數(shù)的圖象上,則__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)若是偶函數(shù),求a值;(2)若對任意,不等式恒成立,求a的取值范圍18.已知函數(shù)(1)求的單調(diào)遞增區(qū)間;(2)求在區(qū)間上的值域19.已知向量,滿足,,且,的夾角為.(1)求;(2)若,求的值.20.已知向量,不共線,,(1)若,求k的值,并判斷,是否同向;(2)若,與夾角為,當(dāng)為何值時,21.已知函數(shù)f(x)=-,若x∈R,f(x)滿足f(-x)=-f(x)(1)求實數(shù)a的值;(2)判斷函數(shù)f(x)(x∈R)的單調(diào)性,并說明理由;(3)若對任意的t∈R,不等式f(t2-4t)+f(-k)<0恒成立,求k的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)正弦型函數(shù)周期的求法即可得到答案.【詳解】故選:C.2、B【解析】根據(jù)各個函數(shù)的奇偶性、函數(shù)值的符號,判斷函數(shù)的圖象特征,即可得到【詳解】解:①為偶函數(shù),它的圖象關(guān)于軸對稱,故第一個圖象即是;②為奇函數(shù),它的圖象關(guān)于原點對稱,它在上的值為正數(shù),在上的值為負數(shù),故第三個圖象滿足;③為奇函數(shù),當(dāng)時,,故第四個圖象滿足;④,為非奇非偶函數(shù),故它的圖象沒有對稱性,故第二個圖象滿足,故選:B【點睛】思路點睛:函數(shù)圖象的辨識可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)從函數(shù)的奇偶性,判斷圖象的對稱性;(4)從函數(shù)的特征點,排除不合要求的圖象.3、A【解析】,解,得,故選4、A【解析】利用分層抽樣的等比例性質(zhì),結(jié)合已知求樣本中中年職工人數(shù).【詳解】由題意知,青年職工人數(shù):中年職工人數(shù):老年職工人數(shù)=350:250:150=7:5:3由樣本中的青年職工為14人,可得中年職工人數(shù)為10故選:A5、C【解析】由,應(yīng)用誘導(dǎo)公式求值即可.【詳解】.故選:C6、B【解析】由已知可得,結(jié)合零點存在定理可判斷零點所在區(qū)間.【詳解】由已知得,所以,又,,,,所以零點所在區(qū)間為,故選:B.7、A【解析】根據(jù)題意,以及指數(shù)和對數(shù)的函數(shù)的單調(diào)性,來確定a,b,c的大小關(guān)系.【詳解】解:是增函數(shù),是增函數(shù).,又,【點睛】本題考查三個數(shù)的大小的求法,考查指數(shù)函數(shù)和對數(shù)函數(shù)性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.根據(jù)題意,構(gòu)造合適的對數(shù)函數(shù)和指數(shù)函數(shù),利用指數(shù)對數(shù)函數(shù)的單調(diào)性判定的范圍是關(guān)鍵.8、B【解析】令x+1=0,求得x和y的值,從而求得函數(shù)f(x)=2ax+1–1(a>0,且a≠1)恒過定點的坐標(biāo)【詳解】令x+1=0,求得x=-1,且y=1,故函數(shù)f(x)=2ax+1–1(a>0且a≠1)恒過定點(-1,1),故選B.【點睛】】本題主要考查指數(shù)函數(shù)的單調(diào)性和特殊點,屬于基礎(chǔ)題9、D【解析】利用線線,線面,面面的位置關(guān)系,以及垂直,平行的判斷和性質(zhì)判斷選項.【詳解】A.若,則或異面,故A不正確;B.缺少垂直于交線這個條件,不能推出,故B不正確;C.由垂直關(guān)系可知,或相交,或是異面,故C不正確;D.因為,所以平面內(nèi)存在直線,若,則,且,所以,故D正確.故選:D10、D【解析】由偶函數(shù)的性質(zhì)求得,利用偶函數(shù)的性質(zhì)化不等式中自變量到上,然后由單調(diào)性轉(zhuǎn)化求解【詳解】解:由題意,,的定義域,時,遞減,又是偶函數(shù),因此不等式轉(zhuǎn)化為,,,解得故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】由題意利用同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個象限中的符號,求得和的值,可得的值.【詳解】因為sinα+cosα=,①所以sin2α+cos2α+2sinαcosα=,即2sinαcosα=.因為α∈(-π,0),所以sinα<0,cosα>0,所以sinα-cosα=,與sinα+cosα=聯(lián)立解得sinα=-,cosα=,所以tanα=.故答案為:.【點睛】該題考查的是有關(guān)三角函數(shù)恒等變換化簡求值問題,涉及到的知識點有同角三角函數(shù)關(guān)系式,在解題的過程中,注意這三個式子是知一求二,屬于簡單題目.12、【解析】由三角函數(shù)定義可得,進而求解即可【詳解】由題,,所以,故答案為:【點睛】本題考查由三角函數(shù)值求終邊上的點,考查三角函數(shù)定義的應(yīng)用13、(1,4)【解析】已知過定點,由向右平移個單位,向上平移個單位即可得,故根據(jù)平移可得到定點.【詳解】由向右平移個單位,向上平移個單位得到,過定點,則過定點.【點睛】本題考查指數(shù)函數(shù)的圖象恒過定點以及函數(shù)圖象的平移問題.圖象平移,定點也隨之平移,平移后仍是定點.14、①.②.【解析】根據(jù)最小正周期以及關(guān)于的方程求解出的值,根據(jù)對稱中心的公式求解出在上的對稱中心;先求解出的值,然后根據(jù)角的配湊結(jié)合兩角差的正弦公式求解出的值.【詳解】因為最小正周期為,所以,又因為,所以,所以或,又因為,所以,所以,所以,令,所以,又因為,所以,所以對稱中心為;因為,,所以,若,則,不符合,所以,所以,所以,故答案為:;.15、④【解析】利用正方體可判斷①②的正誤,利用公理3及其推論可判斷③④的正誤.【詳解】如圖,在正方體中,,,但是異面,故①錯誤.又交于點,但不共面,故②錯誤.如果兩個平面有3個不同公共點,且它們共線,則這兩個平面可以相交,故③錯誤.如圖,因為,故共面于,因為,故,故即,而,故,故即即共面,故④正確.故答案為:④16、【解析】先求出定點的坐標(biāo),再代入冪函數(shù),即可求出解析式.【詳解】令可得,此時,所以函數(shù)(,且)的圖象恒過定點,設(shè)冪函數(shù),則,解得,所以,故答案為:【點睛】關(guān)鍵點點睛:本題的關(guān)鍵點是利用指數(shù)函數(shù)的性質(zhì)和圖象的特點得出,設(shè)冪函數(shù),代入即可求得,.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)0(2)【解析】(1)由偶函數(shù)的定義得出a的值;(2)由分離參數(shù)得,利用換元法得出的最小值,即可得出a的取值范圍【小問1詳解】因為是偶函數(shù),所以,即,故【小問2詳解】由題意知在上恒成立,則,又因為,所以,則.令,則,可得,又因為,當(dāng)且僅當(dāng)時,等號成立,所以,即a的取值范圍是18、(1);(2)【解析】(1)利用兩角差余弦和誘導(dǎo)公式化簡f(x),再求單調(diào)區(qū)間即可;(2)由結(jié)合三角函數(shù)性質(zhì)求值域即可詳解】(1)令,得,的單調(diào)遞增區(qū)間為;(2)由得,故而【點睛】本題考查三角恒等變換,三角函數(shù)單調(diào)性及值域問題,熟記公式準(zhǔn)確計算是關(guān)鍵,是基礎(chǔ)題19、(1)-12;(2)12.【解析】(1)按照向量的點積公式得到,再由向量運算的分配律得到結(jié)果;(2)根據(jù)向量垂直得到,按照運算公式展開得到結(jié)果即可.【詳解】(1)由題意得,∴(2)∵,∴,∴,∴,∴【點睛】這個題目考查了向量的點積運算,以及向量垂直的轉(zhuǎn)化;向量的兩個作用:①載體作用:關(guān)鍵是利用向量的意義、作用脫去“向量外衣”,轉(zhuǎn)化為我們熟悉的數(shù)學(xué)問題;②工具作用:利用向量可解決一些垂直、平行、夾角與距離問題.20、(1)k=-1,反向;(2)k=1【解析】由題得由此能求出,,與反向.由,得,由數(shù)量積運算求出【詳解】,,,,即又向量,不共線,,解得,,即,故與反向,與夾角為,
,又故,即解得故時,【點睛】本題考查向量平行、向量垂直的性質(zhì)等基礎(chǔ)知識,熟記共線定理,準(zhǔn)確計算是關(guān)鍵,是基礎(chǔ)題21、(1)1;(2)見解析;(3)【解析】(1)根據(jù)f(-x)=-f(x)代入求得a值;(2)f(x)是定義域R上的單調(diào)減函數(shù),利用定義證明即可;(3)根據(jù)題意把不等式化為t2-4t>k,求出f(t)=t2-4t的最小值,即可得出k的取值范圍【詳解】(1)函數(shù)f(x)=-,x∈R,且f(-x)=-f(x),∴-=-+,∴a=+=+=1;(2)f(x)=-是定義域R上的單調(diào)減函數(shù),證明如下:任取x1、x2∈R,且x1<x2,則f(x1)-f(x2)=(-)-(-)=-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年合同修改協(xié)議書
- 如何認(rèn)定公司內(nèi)設(shè)機構(gòu)對外簽訂合同范本
- 2025年揭陽大車貨運資格證考試題
- 會計初級商業(yè)合同標(biāo)準(zhǔn)文本
- 信息宣傳培訓(xùn)合同標(biāo)準(zhǔn)文本
- 黃疸的健康宣教
- 2025新版廣州市汽車購買合同范本
- 寫給未來2035年的自己一封信6篇
- 加強自我激勵的實踐建議計劃
- 供泵合同標(biāo)準(zhǔn)文本
- 2023年鄭州黃河文化旅游發(fā)展有限公司招聘考試真題
- DL∕T 1631-2016 并網(wǎng)風(fēng)電場繼電保護配置及整定技術(shù)規(guī)范
- 光纖端面清洗操作規(guī)范方案和判定標(biāo)準(zhǔn)
- Power---PowerVM安裝配置手冊
- 小型液壓機液壓系統(tǒng)設(shè)計
- 1 ultrafleXtreme質(zhì)譜儀
- 六類網(wǎng)線檢測報告(共9頁)
- 高中三年成績單模板(新留學(xué))
- 2020急診科護士分層培訓(xùn)計劃
- 產(chǎn)品認(rèn)證知識培訓(xùn)考試試題
- 四措一案模板
評論
0/150
提交評論