版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
新疆喀什市深喀第一高級(jí)中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)等比數(shù)列的前項(xiàng)和為,若,,則()A.66 B.65C.64 D.632.將正整數(shù)1,2,3,4,…按如圖所示的方式排成三角形數(shù)組,則第19行從左往右數(shù)第5個(gè)數(shù)是()A.381 B.361C.329 D.4003.魯班鎖運(yùn)用了中國(guó)古代建筑中首創(chuàng)的榫卯結(jié)構(gòu),相傳由春秋時(shí)代各國(guó)工匠魯班所作,是由六根內(nèi)部有槽的長(zhǎng)方形木條,按橫豎立三方向各兩根凹凸相對(duì)咬合一起,形成的一個(gè)內(nèi)部卯榫的結(jié)構(gòu)體.魯班鎖的種類各式各樣,千奇百怪.其中以最常見(jiàn)的六根和九根的魯班鎖最為著名.下圖1是經(jīng)典的六根魯班鎖及六個(gè)構(gòu)件的圖片,下圖2是其中的一個(gè)構(gòu)件的三視圖(圖中單位:mm),則此構(gòu)件的表面積為()A. B.C. D.4.已知命題:,,命題:,,則()A.是假命題 B.是真命題C.是真命題 D.是假命題5.內(nèi)角A,B,C的對(duì)邊分別為a,b,c.若,則一定是()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形6.已知四面體,所有棱長(zhǎng)均為2,點(diǎn)E,F(xiàn)分別為棱AB,CD的中點(diǎn),則()A.1 B.2C.-1 D.-27.已知拋物線:,焦點(diǎn)為,若過(guò)的直線交拋物線于、兩點(diǎn),、到拋物線準(zhǔn)線的距離分別為3、7,則長(zhǎng)為A.3 B.4C.7 D.108.若曲線表示圓,則m的取值范圍是()A. B.C. D.9.已知是拋物線上的點(diǎn),F(xiàn)是拋物線C的焦點(diǎn),若,則()A1011 B.2020C.2021 D.202210.等軸雙曲線的中心在原點(diǎn),焦點(diǎn)在軸上,與拋物線的準(zhǔn)線交于兩點(diǎn),且則的實(shí)軸長(zhǎng)為A.1 B.2C.4 D.811.?dāng)?shù)列中,,,.當(dāng)時(shí),則n等于()A.2016 B.2017C.2018 D.201912.若函數(shù)有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若不等式的解集為,則________14.若函數(shù)在[1,3]單調(diào)遞增,則a的取值范圍___15.雙曲線的一條漸近線的一個(gè)方向向量為,則______(寫出一個(gè)即可)16.曲線在處的切線方程為______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列的前n項(xiàng)和,遞增等比數(shù)列滿足,且.(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和為.18.(12分)某班名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是、、、.(1)估計(jì)該班本次測(cè)試的平均分;(2)在、中按分層抽樣的方法抽取個(gè)數(shù)據(jù),再?gòu)倪@個(gè)數(shù)據(jù)中任抽取個(gè),求抽出個(gè)中至少有個(gè)成績(jī)?cè)谥械母怕?19.(12分)已知橢圓的離心率為,橢圓過(guò)點(diǎn).(1)求橢圓C的方程;(2)過(guò)點(diǎn)的直線交橢圓于M、N兩點(diǎn),已知直線MA,NA分別交直線于點(diǎn)P,Q,求的值.20.(12分)已知圓:與直線:.(1)證明:直線過(guò)定點(diǎn),并求出其坐標(biāo);(2)當(dāng)時(shí),直線l與圓C交于A,B兩點(diǎn),求弦的長(zhǎng)度.21.(12分)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若,且,討論函數(shù)的零點(diǎn)個(gè)數(shù).22.(10分)設(shè)函數(shù).(1)討論函數(shù)在區(qū)間上的單調(diào)性;(2)函數(shù),若對(duì)任意的,總存在使得,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)等比數(shù)列前項(xiàng)和的片段和性質(zhì)求解即可.【詳解】解:由題知:,,,所以,,成等比數(shù)列,即5,15,成等比數(shù)列,所以,解得.故選:B.2、C【解析】觀察規(guī)律可知,從第一行起,每一行最后一個(gè)數(shù)是連續(xù)的完全平方數(shù),據(jù)此容易得出答案.【詳解】由圖中數(shù)字排列規(guī)律可知:第1行從左往右最后1個(gè)數(shù)是,第2行從左往右最后1個(gè)數(shù)是,第3行從左往右最后1個(gè)數(shù)是,……第18行從左往右最后1個(gè)數(shù)為,第19行從左往右第5個(gè)數(shù)是故選:C.3、B【解析】由三視圖可知,該構(gòu)件是長(zhǎng)為100,寬為20,高為20的長(zhǎng)方體的上面的中間部分去掉一個(gè)長(zhǎng)為40,寬為20,高為10的小長(zhǎng)方體的一個(gè)幾何體,進(jìn)而求出表面積即可.【詳解】由三視圖可知,該構(gòu)件是長(zhǎng)為100,寬為20,高為20的長(zhǎng)方體的上面的中間部分去掉一個(gè)長(zhǎng)為40,寬為20,高為10的小長(zhǎng)方體的一個(gè)幾何體,如下圖所示,其表面積為:.故選:B.【點(diǎn)睛】本題考查幾何體的表面積的求法,考查三視圖,考查學(xué)生的空間想象能力與計(jì)算求解能力,屬于中檔題.4、C【解析】先分別判斷命題、的真假,再利用邏輯聯(lián)結(jié)詞“或”與“且”判斷命題的真假.【詳解】由題意,,所以,成立,即命題為真命題,,所以不存在,使得,即命題為假命題,所以是假命題,為真命題,所以是真命題,是假命題,是假命題,是真命題.故選:C5、C【解析】利用余弦定理角化邊整理可得.【詳解】由余弦定理有,整理得,故一定是直角三角形.故選:C6、D【解析】在四面體中,取定一組基底向量,表示出,,再借助空間向量數(shù)量積計(jì)算作答.【詳解】四面體所有棱長(zhǎng)均為2,則向量不共面,兩兩夾角都為,則,因點(diǎn)E,F(xiàn)分別為棱AB,CD的中點(diǎn),則,,,所以.故選:D7、D【解析】利用拋物線的定義,把的長(zhǎng)轉(zhuǎn)化為點(diǎn)到準(zhǔn)線的距離的和得解【詳解】解:拋物線:,焦點(diǎn)為,過(guò)的直線交拋物線于、兩點(diǎn),、到拋物線準(zhǔn)線的距離分別為3、7,則故選D【點(diǎn)睛】本題考查拋物線定義的應(yīng)用,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.8、C【解析】按照?qǐng)A的一般方程滿足的條件求解即可.【詳解】或.故選:C.9、C【解析】結(jié)合向量坐標(biāo)運(yùn)算以及拋物線的定義求得正確答案.【詳解】設(shè),因?yàn)槭菕佄锞€上的點(diǎn),F(xiàn)是拋物線C的焦點(diǎn),所以,準(zhǔn)線為:,因此,所以,即,由拋物線的定義可得,所以故選:C10、B【解析】設(shè)等軸雙曲線的方程為拋物線,拋物線準(zhǔn)線方程為設(shè)等軸雙曲線與拋物線的準(zhǔn)線的兩個(gè)交點(diǎn),,則,將,代入,得等軸雙曲線的方程為的實(shí)軸長(zhǎng)為故選11、B【解析】根據(jù)已知條件用逐差法求得的通項(xiàng)公式,再根據(jù)裂項(xiàng)求和法求得,代值計(jì)算即可.【詳解】因?yàn)?,,則,即,則,故,又,即,解得.故選:B.12、C【解析】函數(shù)有兩個(gè)零點(diǎn)等價(jià)于方程有兩個(gè)根,等價(jià)于與圖象有兩個(gè)交點(diǎn),通過(guò)導(dǎo)數(shù)分析的單調(diào)性,根據(jù)圖象即可求出求出的范圍.【詳解】函數(shù)有兩個(gè)零點(diǎn),方程有兩個(gè)根,,分離參數(shù)得,與圖象有兩個(gè)交點(diǎn),令,,令,解得當(dāng)時(shí),,在單調(diào)遞增,當(dāng)時(shí),,在單調(diào)遞減,且在處取得極大值及最大值,可以畫出函數(shù)的大致圖象如下:觀察圖象可以得出.故選:C.【點(diǎn)睛】本題主要考查函數(shù)零點(diǎn)的應(yīng)用,構(gòu)造函數(shù)求函數(shù)的導(dǎo)數(shù),利用函數(shù)極值和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、11【解析】根據(jù)題意得到2與3是方程的兩個(gè)根,再根據(jù)兩根之和與兩根之積求出,進(jìn)而求出答案.【詳解】由題意得:2與3是方程的兩個(gè)根,則,,所以.故答案為:1114、【解析】由在區(qū)間上恒成立來(lái)求得的取值范圍.【詳解】依題意在區(qū)間上恒成立,在上恒成立,所以.故答案為:15、(答案不唯一)【解析】寫出雙曲線的漸近線方程,結(jié)合方向向量的定義求即可.【詳解】由題設(shè),雙曲線的漸近線方程為,又是一條漸近線的一個(gè)方向向量,所以或或或,所以或.故答案為:(答案不唯一)16、【解析】先求出函數(shù)的導(dǎo)函數(shù),然后結(jié)合導(dǎo)數(shù)的幾何意義求解即可.【詳解】解:由,得,則,即當(dāng)時(shí),,所以切線方程為:,故答案為:.【點(diǎn)睛】本題考查了曲線在某點(diǎn)處的切線方程的求法,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),(2)【解析】(1)先求,再由求出,設(shè)等比數(shù)列的公比為q,由條件可得,解出結(jié)合條件可得答案.(2)由(1)可得,利用錯(cuò)位相減法可求【小問(wèn)1詳解】,當(dāng)時(shí),,也滿足上式,∴,則.設(shè)等比數(shù)列的公比為q,由得,解得或.因?yàn)槭沁f增等比數(shù)列,所以,.【小問(wèn)2詳解】①①①②:∴18、(1);(2).【解析】(1)將每個(gè)矩形底邊的中點(diǎn)值乘以對(duì)應(yīng)矩形的面積,再將所得結(jié)果全部相加可得的值;(2)分析可知,所抽取的個(gè)數(shù)據(jù)中,成績(jī)?cè)趦?nèi)的有個(gè),分別記為、、、,成績(jī)?cè)趦?nèi)的有個(gè),分別記為、,列舉出所有的基本事件,并確定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小問(wèn)1詳解】解:由頻率分布直方圖可得.【小問(wèn)2詳解】解:因?yàn)閿?shù)學(xué)成績(jī)?cè)?、?nèi)的頻率分別為、,所以,所抽取的個(gè)數(shù)據(jù)中,成績(jī)?cè)趦?nèi)的有個(gè),分別記為、、、,成績(jī)?cè)趦?nèi)的有個(gè),分別記為、,從這個(gè)數(shù)據(jù)中,任取抽取個(gè),所有的基本事件有:、、、、、、、、、、、、、、,共個(gè),其中,事件“抽出個(gè)中至少有個(gè)成績(jī)?cè)谥小彼幕臼录校?、、、、、、、、,共個(gè),故所求概率為.19、(1)(2)1【解析】(1)由題意得到關(guān)于a,b的方程組,求解方程組即可確定橢圓方程;(2)首先聯(lián)立直線與橢圓的方程,然后由直線MA,NA的方程確定點(diǎn)P,Q的縱坐標(biāo),將線段長(zhǎng)度的比值轉(zhuǎn)化為縱坐標(biāo)比值的問(wèn)題,進(jìn)一步結(jié)合韋達(dá)定理可證得,從而可得兩線段長(zhǎng)度的比值.【小問(wèn)1詳解】由題意,點(diǎn)橢圓上,有,解得故橢圓C的方程為.【小問(wèn)2詳解】當(dāng)直線l的斜率不存在時(shí),顯然不符;當(dāng)直線l的斜率存在時(shí),設(shè)直線l為:聯(lián)立方程得:由,設(shè),有又由直線AM:,令x=-4得,將代入得:,同理得:.很明顯,且,注意到,,而,故所以.【點(diǎn)睛】本題考查求橢圓的方程,解題關(guān)鍵是利用離心率與橢圓上的點(diǎn),找到關(guān)于a,b,c的等量關(guān)系求解a與b.本題中直線方程代入橢圓方程整理后應(yīng)用韋達(dá)定理求出,.表示出,,然后轉(zhuǎn)化為相應(yīng)的比值關(guān)系.考查了學(xué)生的運(yùn)算求解能力,邏輯推理能力.屬于中檔題20、(1)證明見(jiàn)解析,(2)【解析】(1)將直線方程化為,解方程得出定點(diǎn);(2)求出圓心到直線的距離,再由幾何法得出弦長(zhǎng).【小問(wèn)1詳解】證明:因?yàn)橹本€,所以.令,解得,所以不論取何值,直線必過(guò)定點(diǎn)【小問(wèn)2詳解】當(dāng)時(shí),直線為,圓心圓心到直線的距離,則21、(1).(2)答案見(jiàn)解析.【解析】(1)求導(dǎo)函數(shù),求得,,由此可求得曲線在點(diǎn)處的切線方程;(2)求得導(dǎo)函數(shù),分和討論,當(dāng)時(shí),設(shè),求導(dǎo)函數(shù),分析導(dǎo)函數(shù)的符號(hào),得出所令函數(shù)的單調(diào)性,從而得函數(shù)的單調(diào)性,根據(jù)零點(diǎn)存在定理可得答案.【小問(wèn)1詳解】解:當(dāng)時(shí),,所以,故,,所以曲線在點(diǎn)處的切線方程為.【小問(wèn)2詳解】解:依題意,則,當(dāng)時(shí),,所以在上單調(diào)遞增;當(dāng)時(shí),設(shè),此時(shí),所以在上單調(diào)遞增,又,,所以存在,使得,且在上單調(diào)遞減,在上單調(diào)遞增.綜上所述,在上單調(diào)遞減,在上單調(diào)遞增.又,所以當(dāng),即時(shí),有唯一零點(diǎn)在區(qū)間上,當(dāng),即時(shí),在上無(wú)零點(diǎn);故當(dāng)時(shí),在上有1個(gè)零點(diǎn);當(dāng)時(shí),在上無(wú)零點(diǎn).22、(1)答案見(jiàn)解析;(2).【解析】(1)求導(dǎo),根據(jù)導(dǎo)函數(shù)的正負(fù)性分類討論進(jìn)行求解即可;(2)根據(jù)存在性和任意性的定義,結(jié)合導(dǎo)數(shù)的性質(zhì)、(1)的結(jié)論、構(gòu)造函
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 合作辦學(xué)項(xiàng)目協(xié)議范本
- 重型吊車租賃合同范本
- 展覽活動(dòng)參展協(xié)議書模板
- 2024裝修大包合同模板
- 2024年離婚協(xié)議書范本簡(jiǎn)易
- 新服裝定制合同樣本
- 2.2 創(chuàng)新永無(wú)止境導(dǎo)學(xué)案 2024-2025學(xué)年統(tǒng)編版道德與法治九年級(jí)上冊(cè)
- 債券認(rèn)購(gòu)與債權(quán)轉(zhuǎn)讓合同實(shí)務(wù)
- 門店租賃合同協(xié)議書
- 上海市超市洗滌產(chǎn)品流通安全協(xié)議
- 行政服務(wù)中心窗口工作人員手冊(cè)
- 最新患者用藥情況監(jiān)測(cè)
- 試樁施工方案 (完整版)
- ESTIC-AU40使用說(shuō)明書(中文100版)(共138頁(yè))
- 河北省2012土建定額說(shuō)明及計(jì)算規(guī)則(含定額總說(shuō)明)解讀
- 中工商計(jì)算公式匯總.doc
- 深圳市建筑裝飾工程消耗量標(biāo)準(zhǔn)(第三版)2003
- 《初中英語(yǔ)課堂教學(xué)學(xué)困生轉(zhuǎn)化個(gè)案研究》開題報(bào)告
- 鋼筋桁架樓承板施工方案
- 恒溫箱PLC控制系統(tǒng)畢業(yè)設(shè)計(jì)
- 176033山西《裝飾工程預(yù)算定額》定額說(shuō)明及計(jì)算規(guī)則
評(píng)論
0/150
提交評(píng)論