河北省衡水市2025屆高一數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
河北省衡水市2025屆高一數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
河北省衡水市2025屆高一數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
河北省衡水市2025屆高一數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
河北省衡水市2025屆高一數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河北省衡水市2025屆高一數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù),其部分圖象如圖所示,則()A. B.C. D.2.已知函數(shù)與在下列區(qū)間內(nèi)同為單調(diào)遞增的是()A. B.C. D.3.已知全集,集合1,2,3,,,則A.1, B.C. D.3,4.如圖,某幾何體的三視圖是三個半徑相等的圓及每個圓中兩條互相垂直的半徑.若該幾何體的體積是,則它的表面積是A.17π B.18πC.20π D.28π5.設(shè)集合,,,則()A. B.C. D.6.“”是“”的()A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件7.在中,為邊的中點,則()A. B.C. D.8.若函數(shù)f(x)滿足“對任意x1,x2∈(0,+∞),當x1<x2時,都有f(x1)>f(x2)”,則f(x)解析式可以是()A.f(x)=(x-1)2 B.f(x)=exC.f(x)= D.f(x)=ln(x+1)9.若,是第二象限的角,則的值等于()A. B.7C. D.-710.已知的三個頂點A,B,C及半面內(nèi)的一點P,若,則點P與的位置關(guān)系是A.點P在內(nèi)部 B.點P在外部C.點P在線段AC上 D.點P在直線AB上二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),若關(guān)于的不等式在[0,1]上有解,則實數(shù)的取值范圍為______12.若,是夾角為的兩個單位向量,則,的夾角為________.13.已知與之間的一組數(shù)據(jù)如下,且它們之間存在較好的線性關(guān)系,則與的回歸直線方程必過定點__________14.已知函數(shù),(1)______(2)若方程有4個實數(shù)根,則實數(shù)的取值范圍是______15.已知函數(shù),則_________16.______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.函數(shù)(其中)的圖像如圖所示.(Ⅰ)求函數(shù)的解析式;(Ⅱ)求函數(shù)在上的最大值和最小值.18.如圖,四棱錐中,底面為菱形,平面.(1)證明:平面平面;(2)設(shè),,求到平面的距離.19.已知(1)求的值;(2)若是第三象限的角,化簡三角式,并求值.20.已知角的頂點在坐標原點,始邊與軸的非負半軸重合,終邊經(jīng)過點.(1)求;(2)求的值.21.已知直線l的方程為.(1)求過點A(3,2),且與直線l垂直的直線l1方程;(2)求與直線l平行,且到點P(3,0)的距離為的直線l2的方程.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】利用圖象求出函數(shù)的解析式,即可求得的值.【詳解】由圖可知,,函數(shù)的最小正周期為,則,所以,,由圖可得,因為函數(shù)在附近單調(diào)遞增,故,則,,故,所以,,因此,.故選:C.2、D【解析】根據(jù)正余弦函數(shù)的單調(diào)性,即可得到結(jié)果.【詳解】由正弦函數(shù)的單調(diào)性可知,函數(shù)在上單調(diào)遞增;由余弦函數(shù)的單調(diào)性可知,函數(shù)在上單調(diào)遞增;所以函數(shù)與在下列區(qū)間內(nèi)同為單調(diào)遞增的是.故選:D.3、C【解析】可求出集合B,然后進行交集的運算,即可求解,得到答案【詳解】由題意,可得集合,又由,所以故選C【點睛】本題主要考查了集合的交集運算,其中解答中正確求解集合B,熟記集合的交集運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.4、A【解析】由三視圖知,該幾何體的直觀圖如圖所示:是一個球被切掉左上角的,即該幾何體是個球,設(shè)球的半徑為,則,解得,所以它的表面積是的球面面積和三個扇形面積之和,即,故選A【考點】三視圖及球的表面積與體積【名師點睛】由于三視圖能有效地考查學生的空間想象能力,所以以三視圖為載體的立體幾何題基本上是高考每年必考內(nèi)容,高考試題中三視圖一般與幾何體的表面積與體積相結(jié)合.由三視圖還原出原幾何體是解決此類問題的關(guān)鍵.5、D【解析】根據(jù)交集、補集的定義計算可得;【詳解】解:集合,,,則故選:D6、B【解析】利用充分條件,必要條件的定義即得.【詳解】由可推出,由,即或,推不出,故“”是“”的充分不必要條件.故選:B.7、B【解析】由平面向量的三角形法則和數(shù)乘向量可得解【詳解】由題意,故選:B【點睛】本題考查了平面向量的線性運算,考查了學生綜合分析,數(shù)形結(jié)合的能力,屬于基礎(chǔ)題8、C【解析】根據(jù)條件知,f(x)在(0,+∞)上單調(diào)遞減對于A,f(x)=(x-1)2在(1,+∞)上單調(diào)遞增,排除A;對于B,f(x)=ex在(0,+∞)上單調(diào)遞增,排除B;對于C,f(x)=在(0,+∞)上單調(diào)遞減,C正確;對于D,f(x)=ln(x+1)在(0,+∞)上單調(diào)遞增,排除D.9、B【解析】先由同角三角函數(shù)關(guān)系式求出,再利用兩角差的正切公式即可求解.【詳解】因為,是第二象限的角,所以,所以.所以.故選:B10、C【解析】由平面向量的加減運算得:,所以:,由向量共線得:即點P在線段AC上,得解【詳解】因為:,所以:,所以:,即點P在線段AC上,故選C.【點睛】本題考查了平面向量的加減運算及向量共線,屬簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】不等式在[0,1]上有解等價于,令,則.【詳解】由在[0,1]上有解,可得,即令,則,因為,所以,則當,即時,,即,故實數(shù)的取值范圍是故答案為【點睛】利用導數(shù)研究不等式恒成立或存在型問題,首先要構(gòu)造函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性,求出最值,進而得出相應的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.12、【解析】由題得,,再利用向量的夾角公式求解即得解.【詳解】由題得,所以.所以,的夾角為.故答案為:【點睛】本題主要考查平面向量的模和數(shù)量積的計算,考查向量的夾角的計算,意在考查學生對這些知識的理解掌握水平.13、【解析】因為與的回歸直線方程必過定點則與的回歸直線方程必過定點.即答案為.14、①-2②.【解析】先計算出f(1),再根據(jù)給定的分段函數(shù)即可計算得解;令f(x)=t,結(jié)合二次函數(shù)f(x)性質(zhì),的圖象,利用數(shù)形結(jié)合思想即可求解作答.【詳解】(1)依題意,,則,所以;(2)函數(shù)的值域是,令,則方程在有兩個不等實根,方程化為,因此,方程有4個實數(shù)根,等價于方程在有兩個不等實根,即函數(shù)的圖象與直線有兩個不同的公共點,在同一坐標系內(nèi)作出函數(shù)的圖象與直線,而,如圖,觀察圖象得,當時,函數(shù)與直線有兩個不同公共點,所以實數(shù)的取值范圍是.故答案為:-2;15、1【解析】根據(jù)分段函數(shù)的定義即可求解.【詳解】解:因為函數(shù),所以,所以,故答案為:1.16、【解析】由指數(shù)和對數(shù)運算法則直接計算即可.【詳解】.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)最大值為1,最小值為0.【解析】(Ⅰ)由圖象可得,從而得可得,再根據(jù)函數(shù)圖象過點,可求得,故可得函數(shù)的解析式.(Ⅱ)根據(jù)的范圍得到的范圍,得到的范圍后可得的范圍,由此可得函數(shù)的最值試題解析:(Ⅰ)由圖像可知,,∴,∴.∴又點在函數(shù)的圖象上,∴,,∴,,又,∴∴的解析式是(Ⅱ)∵,∴∴,∴,∴當時,函數(shù)取得最大值為1;當時,函數(shù)取得最小值為0點睛:根據(jù)圖象求解析式y(tǒng)=Asin(ωx+φ)的方法(1)根據(jù)函數(shù)圖象的最高點或最低點可求得A;(2)ω由周期T確定,即先由圖象得到函數(shù)的周期,再求出T(3)φ的求法通常有以下兩種:①代入法:把圖象上的一個已知點代入解析式(此時,A,ω,B已知)求解即可,此時要注意交點在上升區(qū)間還是下降區(qū)間②五點法:確定φ值時,往往以尋找“五點法”中的零點作為突破口,具體如下:“第一點”(即圖象上升時與x軸的交點中距原點最近的交點)為ωx+φ=0;“第二點”(即圖象的“峰點”)為ωx+φ=;“第三點”(即圖象下降時與x軸的交點)為ωx+φ=;“第四點”(即圖象的“谷點”)為ωx+φ=;“第五點”為ωx+φ=18、(1)詳見解析(2)【解析】(1)證面面垂直可根據(jù)證線線垂直,∵為菱形,∴.∵平面,∴.∴平面.(2)可根據(jù)等體積法求解到平面的距離試題解析:(1)∵為菱形,∴.∵平面,∴.∴平面.又平面,∴平面平面.(2)∵,,∴,.∵,∴.若設(shè)到平面的距離為.∴,∴,∴.即到平面的距離為.19、(1);(2).【解析】(1)利用商數(shù)關(guān)系及題設(shè)變形整理即得的值;(2)注意既是一個無理式,又是一個分式,那么化簡時既要考慮通分,又要考慮化為有理式.考慮通分,顯然將兩個式子的分母的積作為公分母,這樣一來,被開方式又是完全平方式,即可以開方去掉根號,從將該三角式化簡.試題解析:(1)∵∴2分解之得4分(2)∵是第三象限的角∴=6分===10分由第(1)問可知:原式==12分考點:三角函數(shù)同角關(guān)系式.20、(1);(2).【解析】(1)根據(jù)任意角三角函數(shù)的定義即可求解tanθ;(2)分式分子分母同時除以cos

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論