中考物理熱身梯形含解析2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第1頁
中考物理熱身梯形含解析2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第2頁
中考物理熱身梯形含解析2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第3頁
中考物理熱身梯形含解析2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第4頁
中考物理熱身梯形含解析2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

中考物理熱身梯形含解析2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)雙曲線:的左、右焦點分別為、,P為C上一點,且,,則雙曲線的漸近線方程為()A. B.C. D.2.若函數(shù)在上為單調(diào)減函數(shù),則的取值范圍()A. B.C. D.3.已知等差數(shù)列前項和為,若,則的公差為()A.4 B.3C.2 D.14.已知函數(shù)的定義域為,其導(dǎo)函數(shù)為,若,則下列式子一定成立的是()A. B.C. D.5.設(shè)正實數(shù),滿足(其中為正常數(shù)),若的最大值為3,則()A.3 B.C. D.6.已知的三個頂點是,,,則邊上的高所在的直線方程為()A. B.C. D.7.?dāng)€(cuán)尖是我國古代建筑中屋頂?shù)囊环N結(jié)構(gòu)樣式,多見于亭閣或園林式建筑.下圖是一頂圓形攢尖,其屋頂可近似看作一個圓錐,其軸截面(過圓錐軸的截面)是底邊長為,頂角為的等腰三角形,則該屋頂?shù)拿娣e約為()A. B.C. D.8.若x,y滿足約束條件,則的最大值為()A.2 B.3C.4 D.59.經(jīng)過點A(0,-3)且斜率為2的直線方程為()A. B.C. D.10.拋物線C:的焦點為F,P,R為C上位于F右側(cè)的兩點,若存在點Q使四邊形PFRQ為正方形,則()A. B.C. D.11.等比數(shù)列的各項均為正數(shù),已知向量,,且,則A.12 B.10C.5 D.12.直線的傾斜角為()A.-30° B.60°C.150° D.120°二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)過點K(-1,0)的直線l與拋物線C:y2=4x交于A、B兩點,為拋物線的焦點,若|BF|=2|AF|,則cos∠AFB=_______14.已知函數(shù),若在定義域內(nèi)有兩個零點,那么實數(shù)a的取值范圍為___________.15.若是直線外一點,為線段的中點,,,則______16.若兩條直線與互相垂直,則a的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為了解某市家庭用電量的情況,該市統(tǒng)計局調(diào)查了若干戶居民去年一年的月均用電量(單位:),得到如圖所示的頻率分布直方圖.(1)估計月均用電量的眾數(shù);(2)求a的值;(3)為了既滿足居民的基本用電需求,又提高能源的利用效率,市政府計劃采用階梯電價,月均用電量不高于平均數(shù)的為第一檔,高于平均數(shù)的為第二檔,已知某戶居民月均用電量為,請問該戶居民應(yīng)該按那一檔電價收費,說明理由.18.(12分)在平面直角坐標(biāo)系中,已知菱形的頂點和所在直線的方程為.(1)求對角線所在直線的一般方程;(2)求所在直線的一般方程.19.(12分)如圖,在三棱錐P-ABC中,△ABC是以AC為底的等腰直角三角形,PA=PB=PC=AC=4,O為AC的中點.(1)證明:PO⊥平面ABC;(2)若點M在棱BC上,且,求平面MAP與平面CAP所成角的大小.20.(12分)已知橢圓,離心率為,橢圓上任一點滿足(1)求橢圓的方程;(2)若動直線與橢圓相交于、兩點,若坐標(biāo)原點總在以為直徑的圓外時,求的取值范圍.21.(12分)已知(1)討論函數(shù)的單調(diào)性;(2)若函數(shù)在上有1個零點,求實數(shù)a的取值范圍22.(10分)在①直線l:是拋物線C的準(zhǔn)線;②F是橢圓的一個焦點;③,對于C上的點A,的最小值為;在以上三個條件中任選一個,填到下面問題中的橫線處,并完成解答.已知拋物線C:的焦點為F,滿足_____(1)求拋物線C的標(biāo)準(zhǔn)方程;(2)是拋物線C上在第一象限內(nèi)的一點,直線:與C交于M,N兩點,若的面積為,求m的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)雙曲線定義結(jié)合,求得,在中,利用余弦定理求得之間的關(guān)系,即可得出答案.【詳解】解:因為在雙曲線中,因為,所以,所以,在中,,,由余弦定理可得,即,所以,所以,所以,所以雙曲線的漸近線方程為.故選:B.2、A【解析】分析可知對任意的恒成立,利用參變量分離法結(jié)合二次函數(shù)的基本性質(zhì)可求得實數(shù)的取值范圍.【詳解】因為,則,由題意可知,對任意的恒成立,則,當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞減,所以,,故.故選:A.3、A【解析】由已知,結(jié)合等差數(shù)列前n項和公式、通項公式列方程組求公差即可.詳解】由題設(shè),,解得.故選:A4、B【解析】令,求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)性,即可得到,從而求出答案【詳解】解:令,則,又不等式恒成立,所以,即,所以在單調(diào)遞增,故,即,所以,故選:B5、D【解析】由于,,為正數(shù),且,所以利用基本不等式可求出結(jié)果【詳解】解:因為正實數(shù),滿足(其中為正常數(shù)),所以,則,所以,所以故選:D.6、B【解析】求出邊上的高所在的直線的斜率,再利用點斜式方程可得答案.【詳解】因為,所以邊上的高所在的直線的斜率為,所以邊上的高所在的直線方程為,即.故選:B.7、B【解析】由軸截面三角形,根據(jù)已知可得圓錐底面半徑和母線長,然后可解.【詳解】軸截面如圖,其中,,所以,所以,所以圓錐的側(cè)面積.故選:B8、C【解析】作出不等式組對應(yīng)的可行域,再利用數(shù)形結(jié)合分析求解.【詳解】解:作出不等式組對應(yīng)的可行域為如圖所示的陰影部分區(qū)域,由得,它表示斜率為縱截距為的直線系,當(dāng)直線平移到點時,縱截距最大,最大.聯(lián)立直線方程得得.所以.故選:C9、A【解析】直接代入點斜式方程求解即可詳解】因為直線經(jīng)過點且斜率為2,所以直線的方程為,即,故選:10、A【解析】不妨設(shè),不妨設(shè),則,利用拋物線的對稱性及正方形的性質(zhì)列出的方程求得后可得結(jié)論【詳解】如圖所示,設(shè),不妨設(shè),則,由拋物線的對稱性及正方形的性質(zhì)可得,解得(正數(shù)舍去),所以故選:A11、C【解析】利用數(shù)量積運算性質(zhì)、等比數(shù)列的性質(zhì)及其對數(shù)運算性質(zhì)即可得出【詳解】向量=(,),=(,),且?=4,∴+=4,由等比數(shù)列的性質(zhì)可得:=……===2,則log2(?)=故選C【點睛】本題考查數(shù)量積運算性質(zhì)、等比數(shù)列的性質(zhì)及其對數(shù)運算性質(zhì),考查推理能力與計算能力,屬于中檔題12、C【解析】根據(jù)直線斜率即可得傾斜角.【詳解】設(shè)直線的傾斜角為由已知得,所以直線的斜率,由于,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)已知設(shè)直線方程為與C聯(lián)立,結(jié)合|BF|=2|AF|,利用韋達(dá)定理計算可得點A,B的坐標(biāo),進(jìn)而求出向量的坐標(biāo),進(jìn)而利用求向量夾角余弦值的方法,即可得到答案.【詳解】令直線的方程為將直線方程代入批物線C:的方程,得令且,所以由拋物線的定義知,由|BF|=2|AF|可知,,則,解得:,,則A,B兩點坐標(biāo)分別為,則則.故答案為:14、【解析】先求定義域,再求導(dǎo),針對分類討論,結(jié)合單調(diào)性,極值,最值得到,研究其單調(diào)性及其零點,求出結(jié)果.【詳解】定義域為,,當(dāng)時,恒成立,在單調(diào)遞減,不會有兩個零點,故舍去;當(dāng)時,在上,單調(diào)遞增,在上,單調(diào)遞減,故,又因為時,,時,,故要想在定義域內(nèi)有兩個零點,則,令,,,單調(diào)遞增,又,故當(dāng)時,.故答案為:15、【解析】根據(jù)題意得到,進(jìn)而得到,求得的值,即可求解.【詳解】因為為線段的中點,所以,所以,又因為,所以,所以故答案為:.16、4【解析】兩直線斜率均存在時,兩直線垂直,斜率相乘等于-1,據(jù)此即可求解.【詳解】由題可知,.故答案為:4.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)175(2)0.004(3)該居民該戶居民應(yīng)該按第二檔電價收費,理由見解析【解析】(1)在區(qū)間對應(yīng)的小矩形最高,由此能求出眾數(shù);(2)利用各個區(qū)間的頻率之和為1,即可求出值;(3)求出月均用電量的平均數(shù)的估計值即可判斷.【小問1詳解】由題知,月均用電量在區(qū)間內(nèi)的居民最多,可以將這個區(qū)間的中點175作為眾數(shù)的估計值,所以眾數(shù)的估計值為175.【小問2詳解】由題知:,解得則的值為0.004.【小問3詳解】平均數(shù)的估計值為:,則月均用電量的平均數(shù)的估計值為,又∵∴該居民該戶居民應(yīng)該按第二檔電價收費.18、(1)(2)【解析】(1)首先求的中點,再利用垂直關(guān)系求直線的斜率,即可求解;(2)首先求點的坐標(biāo),再求直線的斜率,求得直線的斜率,利用點斜式直線方程,即可求解.【小問1詳解】由和得:中點四邊形為菱形,,且中點,對角線所在直線方程為:,即:.【小問2詳解】由,解得:,,,,直線的方程為:,即:.19、(1)證明見解析(2)【解析】(1)接BO,由是等邊三角形得,由得出,再利用線面垂直的判斷定理可得平面;(2)建立以為坐標(biāo)原點,分別為軸的空間直角坐標(biāo)系,求出平面的法向量、平面的法向量,利用二面角的向量求法可得答案.【小問1詳解】連接BO,由已知△ABC是以AC為底的等腰直角三角形,且PA=PB=PC=AC=4,O為AC的中點,則是等邊三角形,,,在中,,滿足,即是直角三角形,則,又,平面,所以平面.【小問2詳解】建立以為坐標(biāo)原點,分別為軸的空間直角坐標(biāo)系如圖所示,則,,,,則平面的法向量為,由已知,得到點坐標(biāo),,設(shè)平面的法向量則,令,則,即,設(shè)平面MAP與平面CAP所成角為,則,則平面MAP與平面CAP所成角為.20、(1)(2)或【解析】(1)由已知計算可得即可得出方程.(2)由已知可得聯(lián)立方程,結(jié)合韋達(dá)定理計算即可得出結(jié)果.【小問1詳解】依題得解得:橢圓的方程為.【小問2詳解】由已知動直線與橢圓相交于、,設(shè)聯(lián)立得:解得:,即:或(*)坐標(biāo)原點總在以為直徑的圓外則:,即將(*)代入此式,解得:,即或或21、(1)答案見解析;(2).【解析】(1)對函數(shù)求導(dǎo),按a值的正負(fù)分析討論導(dǎo)數(shù)值的符號計算作答.(2)求出函數(shù)的解析式并求導(dǎo),再按在值的正負(fù)分段討論推理作答.【小問1詳解】函數(shù)的定義域為R,求導(dǎo)得:當(dāng)時,當(dāng)時,,當(dāng)時,,則在上單調(diào)遞減,在上單調(diào)遞增,當(dāng)時,令,得,若,即時,,則有在R上單調(diào)遞增,若,即時,當(dāng)或時,,當(dāng)時,,則有在,上都單調(diào)遞增,在上單調(diào)遞減,若,即時,當(dāng)或時,,當(dāng)時,,則有在,上都單調(diào)遞增,在上單調(diào)遞減,所以,當(dāng)時,上單調(diào)遞減,在上單調(diào)遞增,當(dāng)時,在,上都單調(diào)遞增,在上單調(diào)遞減,當(dāng)時,在R上單調(diào)遞增,當(dāng)時,在,上都單調(diào)遞增,在上單調(diào)遞減.【小問2詳解】依題意,,,當(dāng)時,,當(dāng)時,,,則函數(shù)在上單調(diào)遞增,有,無零點,當(dāng)時,,,函數(shù)在上單調(diào)遞減,,無零點,當(dāng)時,,使得,而在上單調(diào)遞增,當(dāng)時,,當(dāng)時,,因此,在上單調(diào)遞增,在上單調(diào)遞減,又,若,即時,無零點,若,即時,有一個零點,綜上可知,當(dāng)時,在有1個零點,所以實數(shù)a的取值范圍.【點睛】思路點睛:涉及含參的函數(shù)零點問題,利用導(dǎo)數(shù)分類討論,研究函數(shù)的單調(diào)性、最值等,結(jié)合零點存在性定理,借助數(shù)形結(jié)合思想分析解決問題.22、(1)(2)或.【解析】(1)選條件①,由準(zhǔn)線方程得參數(shù),從而得拋物線方程;選條件②,由橢圓的焦點坐標(biāo)與拋物線焦點坐標(biāo)相同求得得拋物線方程;選條件③,由F,A,B三點共線時,,再由兩點間距離公式求得得拋物線方程;(2)求出點坐標(biāo),由點到直線距離公式求得到直線的距離,設(shè),,直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論