河南周口市川匯區(qū)2025屆高二數(shù)學第一學期期末質量檢測模擬試題含解析_第1頁
河南周口市川匯區(qū)2025屆高二數(shù)學第一學期期末質量檢測模擬試題含解析_第2頁
河南周口市川匯區(qū)2025屆高二數(shù)學第一學期期末質量檢測模擬試題含解析_第3頁
河南周口市川匯區(qū)2025屆高二數(shù)學第一學期期末質量檢測模擬試題含解析_第4頁
河南周口市川匯區(qū)2025屆高二數(shù)學第一學期期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

河南周口市川匯區(qū)2025屆高二數(shù)學第一學期期末質量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓:和點,是圓上一點,線段的垂直平分線交于點,則點的軌跡方程是:()A. B.C. D.2.在中,內(nèi)角的對邊分別為,若,則角為A. B.C. D.3.已知直線與平行,則的值為()A. B.C. D.4.若x,y滿足約束條件,則的最大值為()A.2 B.3C.4 D.55.若向量,,,則()A. B.C. D.6.在下列函數(shù)中,最小值為2的是()A. B.C. D.7.在棱長為1的正四面體中,點滿足,點滿足,當和的長度都為最短時,的值是()A. B.C. D.8.拋物線的焦點到準線的距離是A.2 B.4C. D.9.“且”是“”的()A.充分不必要條件 B.必要不充分條件C充要條件 D.既不充分也不必要條件10.《周髀算經(jīng)》是中國最古老的天文學和數(shù)學著作,書中提到:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣的日影子長依次成等差數(shù)列.若冬至、大寒、雨水的日影子長的和是尺,芒種的日影子長為尺,則冬至的日影子長為()A.尺 B.尺C.尺 D.尺11.已知條件,條件表示焦點在x軸上的橢圓,則p是q的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既非充分也非必要條件12.是橢圓的焦點,點在橢圓上,點到的距離為1,則到的距離為()A.3 B.4C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.設P為圓上一動點,Q為直線上一動點,O為坐標原點,則的最小值為___14.設橢圓,點在橢圓上,求該橢圓在P處的切線方程______.15.命題“若,則二元一次不等式表示直線的右上方區(qū)域(包含邊界)”的條件:_________,結論:_____________,它是_________命題(填“真”或“假”).16.若拋物線上一點到其準線的距離為4,則拋物線的標準方程為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線過點(1)若直線與直線垂直,求直線的方程;(2)若直線在兩坐標軸的截距相等,求直線的方程18.(12分)已知函數(shù),是的一個極值點.(1)求b的值;(2)當時,求函數(shù)的最大值.19.(12分)已知橢圓的離心率為,以坐標原點為圓心,以橢圓M的短半軸長為半徑的圓與直線有且只有一個公共點(1)求橢圓M的標準方程;(2)過橢圓M的右焦點F的直線交橢圓M于A,B兩點,過F且垂直于直線的直線交橢圓M于C,D兩點,則是否存在實數(shù)使成立?若存在,求出的值;若不存在,請說明理由20.(12分)已知:,橢圓,雙曲線.(1)若的離心率為,求的離心率;(2)當時,過點的直線與的另一個交點為,與的另一個交點為,若恰好是的中點,求直線的方程.21.(12分)在①,②,③,,成等比數(shù)列這三個條件中選擇符合題意的兩個條件,補充在下面的問題中,并求解.已知數(shù)列中,公差不等于的等差數(shù)列滿足_________,求數(shù)列的前項和.22.(10分)已知等比數(shù)列的前n項和為,,(1)求數(shù)列的通項公式;(2)在與之間插入n個數(shù),使這個數(shù)組成一個等差數(shù)列,記插入的這n個數(shù)之和為,求數(shù)列的前n項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先由在線段的垂直平分線上得出,再由題意得出,進而由橢圓定義可求出點的軌跡方程.【詳解】如圖,因為在線段的垂直平分線上,所以,又點在圓上,所以,因此,點在以、為焦點的橢圓上.其中,,則.從而點的軌跡方程是.故選:B.2、A【解析】因為,那么結合,所以cosA==,所以A=,故答案為A考點:正弦定理與余弦定理點評:本題主要考查正弦定理與余弦定理的基本應用,屬于中等題.3、C【解析】由兩直線平行可得,即可求出答案.【詳解】直線與平行故選:C.4、C【解析】畫出約束條件的可行域,利用目標函數(shù)的幾何意義即可求解【詳解】作出可行域如圖所示,把目標函數(shù)轉化為,平移,經(jīng)過點時,縱截距最大,所以的最大值為4.故選:C5、A【解析】根據(jù)向量垂直得到方程,求出的值.【詳解】由題意得:,解得:.故選:A6、C【解析】結合基本不等式的知識對選項逐一分析,由此確定正確選項.【詳解】對于A選項,時,為負數(shù),A錯誤.對于B選項,,,,但不存在使成立,所以B錯誤.對于C選項,,當且僅當時等號成立,C正確.對于D選項,,,,但不存在使成立,所以D錯誤.故選:C7、A【解析】根據(jù)給定條件確定點M,N的位置,再借助空間向量數(shù)量積計算作答.【詳解】因,則,即,而,則共面,點M在平面內(nèi),又,即,于是得點N在直線上,棱長為1的正四面體中,當長最短時,點M是點A在平面上的射影,即正的中心,因此,,當長最短時,點N是點D在直線AC上的射影,即正邊AC的中點,,而,,所以.故選:A8、D【解析】因為拋物線方程可化為,所以拋物線的焦點到準線的距離是,故選D.考點:1、拋物線的標準方程;2、拋物線的幾何性質.9、A【解析】按照充分必要條件的判斷方法判斷,“且”能否推出“”,以及“”能否推出“且”,判斷得到正確答案,【詳解】當且時,成立,反過來,當時,例:,不能推出且.所以“且”是“”的充分不必要條件.故選:A【點睛】本題考查充分不必要條件的判斷,重點考查基本判斷方法,屬于基礎題型.10、D【解析】根據(jù)題意轉化為等差數(shù)列,求首項.【詳解】設冬至的日影長為,雨水的日影長為,根據(jù)等差數(shù)列的性質可知,芒種的日影長為,,解得:,,所以冬至的日影長為尺.故選:D11、A【解析】根據(jù)條件,求得a的范圍,根據(jù)充分、必要條件的定義,即可得答案.【詳解】因為條件表示焦點在x軸上的橢圓,所以,解得或,所以條件是條件q:或的充分不必要條件.故選:A12、C【解析】利用橢圓的定義直接求解【詳解】由題意得,得,因為,,所以,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】取點,可得,從而,,從而可求解【詳解】解:由圓,得圓心,半徑,取點A(3,0),則,又,∴,∴,∴,當且僅當直線時取等號故答案為:14、【解析】由題意可知切線的斜率存在,所以設切線方程為,代入橢圓方程中整理化簡,令判別式等于零,可求出的值,從而可求得切線方程【詳解】由題意可知切線的斜率存在,所以設切線方程為,將代入中得,,化簡整理得,令,化簡整理得,即,解得,所以切線方程為,即,故答案為:15、①.②.二元一次不等式表示直線的右上方區(qū)域(包含邊界)③.真【解析】由二元一次不等式的意義可解答問題.【詳解】因為,二元一次不等式所表示的區(qū)域如下圖所示:所以在的條件下,二元一次不等式表示直線的右上方區(qū)域(包含邊界),此命題是真命題.故答案為:;二元一次不等式表示直線的右上方區(qū)域(包含邊界);真16、【解析】先由拋物線的方程求出準線的方程,然后根據(jù)點到準線的距離可求,進而可得拋物線的標準方程.【詳解】拋物線的準線方程為,點到其準線的距離為,由題意可得,解得,故拋物線的標準方程為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)由兩條直線垂直可設直線的方程為,將點的坐標代入計算即可;(2)當直線過原點時,根據(jù)直線的點斜式方程即可得出結果;當直線不過原點時可設直線的方程為,將點的坐標代入計算即可.【小問1詳解】解:因為直線與直線垂直所以,設直線的方程為,因為直線過點,所以,解得,所以直線的方程為【小問2詳解】解:當直線過原點時,斜率為,由點斜式求得直線的方程是,即當直線不過原點時,設直線的方程為,把點代入方程得,所以直線的方程是綜上,所求直線的方程為或18、(1);(2)【解析】(1)先求出導函數(shù),再根據(jù)x=2是的一個極值點對應x=2是導數(shù)為0的根即可求b的值;(2)根據(jù)(1)的結論求出函數(shù)的極值點,通過比較極值與端點值的大小從而確定出最大值.【小問1詳解】由題設,.∵x=2是的一個極值點,∴x=2是的一個根,代入解得:.經(jīng)檢驗,滿足題意.【小問2詳解】由(1)知:,則.令,解得x=1或x=2.x1(1,2)2(2,3)30﹣0+遞減遞增∵當x∈(1,2)時,即在(1,2)上單調遞減;當x∈(2,3)時,即在(2,3)上單調遞增.∴當x∈[1,3]時,函數(shù)的最大值為與中的較大者.∴函數(shù)的最大值為.19、(1)(2)存在,【解析】(1)求出后可得橢圓的標準方程.(2)設直線,聯(lián)立直線方程和橢圓方程,消元后利用韋達定理可用表示,從而可求的值.【小問1詳解】據(jù)題意,得,∴,∴所求橢圓M的標準方程為【小問2詳解】據(jù)(1)求解知,點F坐標為若直線的斜率存在,且不等于0,設直線據(jù)得設,則,∴同理可求知,∴,∴,即此時存滿足題設;若直線的斜率不存在,則;若直線的斜率為0,則,此時若,則綜上,存在實數(shù),且使20、(1)(2)或【解析】(1)有橢圓的離心率可以得到,的關系,在雙曲線中方程是非標準的方程,注意套公式時容易出錯.(2)聯(lián)立方程分別解得P,Q兩點的橫坐標,利用中點坐標公式即可解得斜率值.【小問1詳解】橢圓的離心率為,,在雙曲線中因為,.【小問2詳解】當時,橢圓,雙曲線.當過點的直線斜率不存在時,點P,Q恰好重合,坐標為,所以不符合條件;當斜率存在時,設直線方程為,,聯(lián)立方程得,利用韋達定理,所以;同理聯(lián)立方程,韋達定理得,所以由于是的中點,所以,所以,即,化簡得,所以直線方程為或.21、詳見解析【解析】根據(jù)已知求出的通項公式.當①②時,設數(shù)列公差為,利用賦值法得到與的關系式,列方程求出與,求出,寫出的通項公式,可得數(shù)列的通項公式,利用錯位相減法求和即可;選②③時,設數(shù)列公差為,根據(jù)題意得到與的關系式,解出與,寫出的通項公式,可得數(shù)列的通項公式,利用錯位相減法求和即可;選①③時,設數(shù)列公差為,根據(jù)題意得到與的關系式,發(fā)現(xiàn)無解,則等差數(shù)列不存在,故不合題意.【詳解】解:因為,,所以是以為首項,為公比的等比數(shù)列,所以,選①②時,設數(shù)列公差為,因為,所以,因為,所以時,,解得,,所以,所以.所以.(i)所以(ii)(i)(ii),得:所以.選②③時,設數(shù)列公差為,因為,所以,即,因為,,成等比數(shù)列,所以,即,化簡得,因為,所以,從而,所以,所以,(i)所以(ii)(i)(ii),得:,所以.選①③時,設數(shù)列公差為,因為,所以時,,所以.又因為,,成等比數(shù)列,所以,即,化簡得,因為,所以,從而無解,所以等差數(shù)列不存在,故不合題意.【點睛】本題考查了等差(比)數(shù)列的通項公式,考查了錯位相減法在數(shù)列求和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論