山西省應(yīng)縣第一中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第1頁(yè)
山西省應(yīng)縣第一中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第2頁(yè)
山西省應(yīng)縣第一中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第3頁(yè)
山西省應(yīng)縣第一中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第4頁(yè)
山西省應(yīng)縣第一中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山西省應(yīng)縣第一中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.三棱錐中,側(cè)棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.2.已知某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B.64 C. D.323.“哥德巴赫猜想”是近代三大數(shù)學(xué)難題之一,其內(nèi)容是:一個(gè)大于2的偶數(shù)都可以寫成兩個(gè)質(zhì)數(shù)(素?cái)?shù))之和,也就是我們所謂的“1+1”問(wèn)題.它是1742年由數(shù)學(xué)家哥德巴赫提出的,我國(guó)數(shù)學(xué)家潘承洞、王元、陳景潤(rùn)等在哥德巴赫猜想的證明中做出相當(dāng)好的成績(jī).若將6拆成兩個(gè)正整數(shù)的和,則拆成的和式中,加數(shù)全部為質(zhì)數(shù)的概率為()A. B. C. D.4.將函數(shù)的圖像向左平移個(gè)單位得到函數(shù)的圖像,則的最小值為()A. B. C. D.5.已知函數(shù)的圖象與直線的相鄰交點(diǎn)間的距離為,若定義,則函數(shù),在區(qū)間內(nèi)的圖象是()A. B.C. D.6.函數(shù)的大致圖像為()A. B.C. D.7.已知拋物線的焦點(diǎn)為,對(duì)稱軸與準(zhǔn)線的交點(diǎn)為,為上任意一點(diǎn),若,則()A.30° B.45° C.60° D.75°8.直線l過(guò)拋物線的焦點(diǎn)且與拋物線交于A,B兩點(diǎn),則的最小值是A.10 B.9 C.8 D.79.設(shè)函數(shù)(,為自然對(duì)數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當(dāng)時(shí),.若存在,且為函數(shù)的一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.10.已知圓錐的高為3,底面半徑為,若該圓錐的頂點(diǎn)與底面的圓周都在同一個(gè)球面上,則這個(gè)球的體積與圓錐的體積的比值為()A. B. C. D.11.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向右平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向左平移個(gè)單位12.如圖,在△ABC中,點(diǎn)M是邊BC的中點(diǎn),將△ABM沿著AM翻折成△AB'M,且點(diǎn)B'不在平面AMC內(nèi),點(diǎn)P是線段B'C上一點(diǎn).若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經(jīng)過(guò)△AB'CA.重心 B.垂心 C.內(nèi)心 D.外心二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域是.14.已知非零向量的夾角為,且,則______.15.已知雙曲線:(,),直線:與雙曲線的兩條漸近線分別交于,兩點(diǎn).若(點(diǎn)為坐標(biāo)原點(diǎn))的面積為32,且雙曲線的焦距為,則雙曲線的離心率為________.16.某四棱錐的三視圖如圖所示,那么此四棱錐的體積為______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)橢圓,直線經(jīng)過(guò)點(diǎn),直線經(jīng)過(guò)點(diǎn),直線直線,且直線分別與橢圓相交于兩點(diǎn)和兩點(diǎn).(Ⅰ)若分別為橢圓的左、右焦點(diǎn),且直線軸,求四邊形的面積;(Ⅱ)若直線的斜率存在且不為0,四邊形為平行四邊形,求證:;(Ⅲ)在(Ⅱ)的條件下,判斷四邊形能否為矩形,說(shuō)明理由.18.(12分)在等比數(shù)列中,已知,.設(shè)數(shù)列的前n項(xiàng)和為,且,(,).(1)求數(shù)列的通項(xiàng)公式;(2)證明:數(shù)列是等差數(shù)列;(3)是否存在等差數(shù)列,使得對(duì)任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請(qǐng)說(shuō)明理由.19.(12分)如圖,在直三棱柱中,,點(diǎn)分別為和的中點(diǎn).(Ⅰ)棱上是否存在點(diǎn)使得平面平面?若存在,寫出的長(zhǎng)并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.(Ⅱ)求二面角的余弦值.20.(12分)中,內(nèi)角的對(duì)邊分別為,.(1)求的大??;(2)若,且為的重心,且,求的面積.21.(12分)在如圖所示的四棱錐中,四邊形是等腰梯形,,,平面,,.(1)求證:平面;(2)已知二面角的余弦值為,求直線與平面所成角的正弦值.22.(10分)某職稱晉級(jí)評(píng)定機(jī)構(gòu)對(duì)參加某次專業(yè)技術(shù)考試的100人的成績(jī)進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級(jí)成功,否則晉級(jí)失?。畷x級(jí)成功晉級(jí)失敗合計(jì)男16女50合計(jì)(1)求圖中的值;(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為“晉級(jí)成功”與性別有關(guān)?(3)將頻率視為概率,從本次考試的所有人員中,隨機(jī)抽取4人進(jìn)行約談,記這4人中晉級(jí)失敗的人數(shù)為,求的分布列與數(shù)學(xué)期望.(參考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.024

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由題,側(cè)棱底面,,,,則根據(jù)余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點(diǎn)睛:本題考查的知識(shí)點(diǎn)是球內(nèi)接多面體,熟練掌握球的半徑公式是解答的關(guān)鍵.2、A【解析】

根據(jù)三視圖,還原空間幾何體,即可得該幾何體的體積.【詳解】由該幾何體的三視圖,還原空間幾何體如下圖所示:可知該幾何體是底面在左側(cè)的四棱錐,其底面是邊長(zhǎng)為4的正方形,高為4,故.故選:A【點(diǎn)睛】本題考查了三視圖的簡(jiǎn)單應(yīng)用,由三視圖還原空間幾何體,棱錐體積的求法,屬于基礎(chǔ)題.3、A【解析】

列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質(zhì)數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個(gè)正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質(zhì)數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【點(diǎn)睛】本題主要考查了古典概型,基本事件,屬于容易題.4、B【解析】

根據(jù)三角函數(shù)的平移求出函數(shù)的解析式,結(jié)合三角函數(shù)的性質(zhì)進(jìn)行求解即可.【詳解】將函數(shù)的圖象向左平移個(gè)單位,得到,此時(shí)與函數(shù)的圖象重合,則,即,,當(dāng)時(shí),取得最小值為,故選:.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)的平移關(guān)系求出解析式是解決本題的關(guān)鍵.5、A【解析】

由題知,利用求出,再根據(jù)題給定義,化簡(jiǎn)求出的解析式,結(jié)合正弦函數(shù)和正切函數(shù)圖象判斷,即可得出答案.【詳解】根據(jù)題意,的圖象與直線的相鄰交點(diǎn)間的距離為,所以的周期為,則,所以,由正弦函數(shù)和正切函數(shù)圖象可知正確.故選:A.【點(diǎn)睛】本題考查三角函數(shù)中正切函數(shù)的周期和圖象,以及正弦函數(shù)的圖象,解題關(guān)鍵是對(duì)新定義的理解.6、D【解析】

通過(guò)取特殊值逐項(xiàng)排除即可得到正確結(jié)果.【詳解】函數(shù)的定義域?yàn)?,?dāng)時(shí),,排除B和C;當(dāng)時(shí),,排除A.故選:D.【點(diǎn)睛】本題考查圖象的判斷,取特殊值排除選項(xiàng)是基本手段,屬中檔題.7、C【解析】

如圖所示:作垂直于準(zhǔn)線交準(zhǔn)線于,則,故,得到答案.【詳解】如圖所示:作垂直于準(zhǔn)線交準(zhǔn)線于,則,在中,,故,即.故選:.【點(diǎn)睛】本題考查了拋物線中角度的計(jì)算,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.8、B【解析】

根據(jù)拋物線中過(guò)焦點(diǎn)的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標(biāo)準(zhǔn)方程可知p=2因?yàn)橹本€l過(guò)拋物線的焦點(diǎn),由過(guò)拋物線焦點(diǎn)的弦的性質(zhì)可知所以因?yàn)闉榫€段長(zhǎng)度,都大于0,由基本不等式可知,此時(shí)所以選B【點(diǎn)睛】本題考查了拋物線的基本性質(zhì)及其簡(jiǎn)單應(yīng)用,基本不等式的用法,屬于中檔題.9、D【解析】

先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對(duì)函數(shù)求導(dǎo),判斷其單調(diào)性,進(jìn)而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因?yàn)?,所以,所以為奇函?shù),當(dāng)時(shí),,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因?yàn)榇嬖?,所以,所以,化?jiǎn)得,所以,即令,因?yàn)闉楹瘮?shù)的一個(gè)零點(diǎn),所以在時(shí)有一個(gè)零點(diǎn)因?yàn)楫?dāng)時(shí),,所以函數(shù)在時(shí)單調(diào)遞減,由選項(xiàng)知,,又因?yàn)?,所以要使在時(shí)有一個(gè)零點(diǎn),只需使,解得,所以a的取值范圍為,故選D.【點(diǎn)睛】本題主要考查函數(shù)與方程的綜合問(wèn)題,難度較大.10、B【解析】

計(jì)算求半徑為,再計(jì)算球體積和圓錐體積,計(jì)算得到答案.【詳解】如圖所示:設(shè)球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【點(diǎn)睛】本題考查了圓錐,球體積,圓錐的外接球問(wèn)題,意在考查學(xué)生的計(jì)算能力和空間想象能力.11、D【解析】

直接根據(jù)三角函數(shù)的圖象平移規(guī)則得出正確的結(jié)論即可;【詳解】解:函數(shù),要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個(gè)單位.故選:D.【點(diǎn)睛】本題考查三角函數(shù)圖象平移的應(yīng)用問(wèn)題,屬于基礎(chǔ)題.12、A【解析】

根據(jù)題意P到兩個(gè)平面的距離相等,根據(jù)等體積法得到SΔPB'M【詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個(gè)平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點(diǎn).故選:A.【點(diǎn)睛】本題考查了二面角,等體積法,意在考查學(xué)生的計(jì)算能力和空間想象能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】解:因?yàn)?,故定義域?yàn)?4、1【解析】

由已知條件得出,可得,解之可得答案.【詳解】向量的夾角為,且,,可得:,

可得,

解得,

故答案為:1.【點(diǎn)睛】本題考查根據(jù)向量的數(shù)量積運(yùn)算求向量的模,關(guān)鍵在于將所求的向量的模平方,利用向量的數(shù)量積化簡(jiǎn)求解即可,屬于基礎(chǔ)題.15、或【解析】

用表示出的面積,求得等量關(guān)系,聯(lián)立焦距的大小,以及,即可容易求得,則離心率得解.【詳解】聯(lián)立解得.所以的面積,所以.而由雙曲線的焦距為知,,所以.聯(lián)立解得或故雙曲線的離心率為或.故答案為:或.【點(diǎn)睛】本題考查雙曲線的方程與性質(zhì),考查運(yùn)算求解能力以及函數(shù)與方程思想,屬中檔題.16、【解析】

利用三視圖判斷幾何體的形狀,然后通過(guò)三視圖的數(shù)據(jù)求解幾何體的體積.【詳解】如圖:此四棱錐的高為,底面是長(zhǎng)為,寬為2的矩形,所以體積.所以本題答案為.【點(diǎn)睛】本題考查幾何體與三視圖的對(duì)應(yīng)關(guān)系,幾何體體積的求法,考查空間想象能力與計(jì)算能力.解決本類題目的關(guān)鍵是準(zhǔn)確理解幾何體的定義,真正把握幾何體的結(jié)構(gòu)特征,可以根據(jù)條件構(gòu)建幾何模型,在幾何模型中進(jìn)行判斷.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ)證明見解析;(Ⅲ)不能,證明見解析【解析】

(Ⅰ)計(jì)算得到故,,,,計(jì)算得到面積.(Ⅱ)設(shè)為,聯(lián)立方程得到,計(jì)算,同理,根據(jù)得到,得到證明.(Ⅲ)設(shè)中點(diǎn)為,根據(jù)點(diǎn)差法得到,同理,故,得到結(jié)論.【詳解】(Ⅰ),,故,,,.故四邊形的面積為.(Ⅱ)設(shè)為,則,故,設(shè),,故,,同理可得,,故,即,,故.(Ⅲ)設(shè)中點(diǎn)為,則,,相減得到,即,同理可得:的中點(diǎn),滿足,故,故四邊形不能為矩形.【點(diǎn)睛】本題考查了橢圓內(nèi)四邊形的面積,形狀,根據(jù)四邊形形狀求參數(shù),意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.18、(1)(2)見解析(3)存在唯一的等差數(shù)列,其通項(xiàng)公式為,滿足題設(shè)【解析】

(1)由,可得公比,即得;(2)由(1)和可得數(shù)列的遞推公式,即可知結(jié)果為常數(shù),即得證;(3)由(2)可得數(shù)列的通項(xiàng)公式,,設(shè)出等差數(shù)列,再根據(jù)不等關(guān)系來(lái)算出的首項(xiàng)和公差即可.【詳解】(1)設(shè)等比數(shù)列的公比為q,因?yàn)椋?,所以,解?所以數(shù)列的通項(xiàng)公式為:.(2)由(1)得,當(dāng),時(shí),可得①,②②①得,,則有,即,,.因?yàn)?,由①得,,所以,所以?所以數(shù)列是以為首項(xiàng),1為公差的等差數(shù)列.(3)由(2)得,所以,.假設(shè)存在等差數(shù)列,其通項(xiàng),使得對(duì)任意,都有,即對(duì)任意,都有.③首先證明滿足③的.若不然,,則,或.(i)若,則當(dāng),時(shí),,這與矛盾.(ii)若,則當(dāng),時(shí),.而,,所以.故,這與矛盾.所以.其次證明:當(dāng)時(shí),.因?yàn)椋栽谏蠁握{(diào)遞增,所以,當(dāng)時(shí),.所以當(dāng),時(shí),.再次證明.(iii)若時(shí),則當(dāng),,,,這與③矛盾.(iv)若時(shí),同(i)可得矛盾.所以.當(dāng)時(shí),因?yàn)椋?,所以?duì)任意,都有.所以,.綜上,存在唯一的等差數(shù)列,其通項(xiàng)公式為,滿足題設(shè).【點(diǎn)睛】本題考查求等比數(shù)列通項(xiàng)公式,證明等差數(shù)列,以及數(shù)列中的探索性問(wèn)題,是一道數(shù)列綜合題,考查學(xué)生的分析,推理能力.19、(Ⅰ)存在點(diǎn)滿足題意,且,證明詳見解析;(Ⅱ).【解析】

(Ⅰ)可考慮采用補(bǔ)形法,取的中點(diǎn)為,連接,可結(jié)合等腰三角形性質(zhì)和線面垂直性質(zhì),先證平面,即,若能證明,則可得證,可通過(guò)我們反推出點(diǎn)對(duì)應(yīng)位置應(yīng)在處,進(jìn)而得證;(Ⅱ)采用建系法,以為坐標(biāo)原點(diǎn),以分別為軸建立空間直角坐標(biāo)系,分別求出兩平面對(duì)應(yīng)法向量,再結(jié)合向量夾角公式即可求解;【詳解】(Ⅰ)存在點(diǎn)滿足題意,且.證明如下:取的中點(diǎn)為,連接.則,所以平面.因?yàn)槭堑闹悬c(diǎn),所以.在直三棱柱中,平面平面,且交線為,所以平面,所以.在平面內(nèi),,,所以,從而可得.又因?yàn)椋云矫?因?yàn)槠矫?,所以平面平?(Ⅱ)如圖所示,以為坐標(biāo)原點(diǎn),以分別為軸建立空間直角坐標(biāo)系.易知,,,,所以,,.設(shè)平面的法向量為,則有取,得.同理可求得平面的法向量為.則.由圖可知二面角為銳角,所以其余弦值為.【點(diǎn)睛】本題考查面面垂直的判定定理、向量法求二面角的余弦值,屬于中檔題20、(1);(2)【解析】

(1)利用正弦定理,轉(zhuǎn)化為,分析運(yùn)算即得解;(2)由為的重心,得到,平方可得解c,由面積公式即得解.【詳解】(1)由,由正弦定理得C,即∴∵∴,又∵∴(2)由于為的重心故,∴解得或舍∴的面積為.【點(diǎn)睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.21、(1)證明見解析;(2).【解析】

(1)由已知可得,結(jié)合,由直線與平面垂直的判定可得平面;(2)由(1)知,,則,,兩兩互相垂直,以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸建立空間直角坐標(biāo)系,設(shè),0,,由二面角的余弦值為求解,再由空間向量求解直線與平面所成角的正弦值.【詳解】(1)證明:因?yàn)樗倪呅问堑妊菪危?,,所?又,所以,因此,,又,且,,平面,所以平面.(2)取的中點(diǎn),連接,,由于,因此,又平面,平面,所以.由于,,平面,所以平面,故,所以為

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論