江蘇省徐州侯集高級中學(xué)2025屆數(shù)學(xué)高三上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
江蘇省徐州侯集高級中學(xué)2025屆數(shù)學(xué)高三上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
江蘇省徐州侯集高級中學(xué)2025屆數(shù)學(xué)高三上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
江蘇省徐州侯集高級中學(xué)2025屆數(shù)學(xué)高三上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
江蘇省徐州侯集高級中學(xué)2025屆數(shù)學(xué)高三上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江蘇省徐州侯集高級中學(xué)2025屆數(shù)學(xué)高三上期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若,則的值等于()A. B. C. D.2.設(shè)等比數(shù)列的前項(xiàng)和為,則“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要3.某人造地球衛(wèi)星的運(yùn)行軌道是以地心為一個(gè)焦點(diǎn)的橢圓,其軌道的離心率為,設(shè)地球半徑為,該衛(wèi)星近地點(diǎn)離地面的距離為,則該衛(wèi)星遠(yuǎn)地點(diǎn)離地面的距離為()A. B.C. D.4.已知雙曲線,點(diǎn)是直線上任意一點(diǎn),若圓與雙曲線的右支沒有公共點(diǎn),則雙曲線的離心率取值范圍是().A. B. C. D.5.下列函數(shù)中,值域?yàn)榈呐己瘮?shù)是()A. B. C. D.6.拋物線y2=ax(a>0)的準(zhǔn)線與雙曲線C:x28A.8 B.6 C.4 D.27.已知數(shù)列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-18.設(shè)雙曲線的右頂點(diǎn)為,右焦點(diǎn)為,過點(diǎn)作平行的一條漸近線的直線與交于點(diǎn),則的面積為()A. B. C.5 D.69.若集合,,則A. B. C. D.10.《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017版)》提出了數(shù)學(xué)學(xué)科的六大核心素養(yǎng).為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對二人進(jìn)行了測驗(yàn),根據(jù)測驗(yàn)結(jié)果繪制了雷達(dá)圖(如圖,每項(xiàng)指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)高于乙B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)C.乙的六大素養(yǎng)中邏輯推理最差D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲11.《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請歸但求穿墻術(shù).得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術(shù)”:,,,,則按照以上規(guī)律,若具有“穿墻術(shù)”,則()A.48 B.63 C.99 D.12012.某三棱錐的三視圖如圖所示,則該三棱錐的體積為A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在△ABC中,AB=AC=2,,,AE的延長線交BC邊于點(diǎn)F,若,則____.14.已知數(shù)列{an}的前n項(xiàng)和為Sn,向量(4,﹣n),(Sn,n+3).若⊥,則數(shù)列{}前2020項(xiàng)和為_____15.設(shè)雙曲線的左焦點(diǎn)為,過點(diǎn)且傾斜角為45°的直線與雙曲線的兩條漸近線順次交于,兩點(diǎn)若,則的離心率為________.16.在平面直角坐標(biāo)系中,點(diǎn)在曲線:上,且在第四象限內(nèi).已知曲線在點(diǎn)處的切線為,則實(shí)數(shù)的值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;(2)若,當(dāng)時(shí),函數(shù),求函數(shù)的最小值.18.(12分)已知橢圓的右焦點(diǎn)為,離心率為.(1)若,求橢圓的方程;(2)設(shè)直線與橢圓相交于、兩點(diǎn),、分別為線段、的中點(diǎn),若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.19.(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)在處的切線方程;(2)若函數(shù)沒有零點(diǎn),求實(shí)數(shù)的取值范圍.20.(12分)已知函數(shù).(1)當(dāng)時(shí),求的單調(diào)區(qū)間.(2)設(shè)直線是曲線的切線,若的斜率存在最小值-2,求的值,并求取得最小斜率時(shí)切線的方程.(3)已知分別在,處取得極值,求證:.21.(12分)曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)過原點(diǎn)且傾斜角為的射線與曲線分別交于兩點(diǎn)(異于原點(diǎn)),求的取值范圍.22.(10分)在中,角的對邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

由函數(shù)的奇偶性可得,【詳解】∵其中為奇函數(shù),也為奇函數(shù)∴也為奇函數(shù)∴故選:B【點(diǎn)睛】函數(shù)奇偶性的運(yùn)用即得結(jié)果,小記,定義域關(guān)于原點(diǎn)對稱時(shí)有:①奇函數(shù)±奇函數(shù)=奇函數(shù);②奇函數(shù)×奇函數(shù)=偶函數(shù);③奇函數(shù)÷奇函數(shù)=偶函數(shù);④偶函數(shù)±偶函數(shù)=偶函數(shù);⑤偶函數(shù)×偶函數(shù)=偶函數(shù);⑥奇函數(shù)×偶函數(shù)=奇函數(shù);⑦奇函數(shù)÷偶函數(shù)=奇函數(shù)2、A【解析】

首先根據(jù)等比數(shù)列分別求出滿足,的基本量,根據(jù)基本量的范圍即可確定答案.【詳解】為等比數(shù)列,若成立,有,因?yàn)楹愠闪?,故可以推出且,若成立,?dāng)時(shí),有,當(dāng)時(shí),有,因?yàn)楹愠闪?,所以有,故可以推出,,所以“”是“”的充分不必要條件.故選:A.【點(diǎn)睛】本題主要考查了等比數(shù)列基本量的求解,充分必要條件的集合關(guān)系,屬于基礎(chǔ)題.3、A【解析】

由題意畫出圖形,結(jié)合橢圓的定義,結(jié)合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛(wèi)星遠(yuǎn)地點(diǎn)離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長半軸),設(shè)衛(wèi)星近地點(diǎn),遠(yuǎn)地點(diǎn)離地面距離分別為r,n,如圖:則所以,,故選:A【點(diǎn)睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關(guān)鍵,屬于中檔題.4、B【解析】

先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據(jù)圓與雙曲線的右支沒有公共點(diǎn),可得,解得即可.【詳解】由題意,雙曲線的一條漸近線方程為,即,∵是直線上任意一點(diǎn),則直線與直線的距離,∵圓與雙曲線的右支沒有公共點(diǎn),則,∴,即,又故的取值范圍為,故選:B.【點(diǎn)睛】本題主要考查了直線和雙曲線的位置關(guān)系,以及兩平行線間的距離公式,其中解答中根據(jù)圓與雙曲線的右支沒有公共點(diǎn)得出是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.5、C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點(diǎn):1、函數(shù)的奇偶性;2、函數(shù)的值域.6、A【解析】

求得拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,解得兩交點(diǎn),由三角形的面積公式,計(jì)算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準(zhǔn)線為x=-a4,雙曲線C:x28-y24【點(diǎn)睛】本題考查三角形的面積的求法,注意運(yùn)用拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,考查運(yùn)算能力,屬于基礎(chǔ)題.7、D【解析】試題分析:因?yàn)閍n+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點(diǎn):數(shù)列的通項(xiàng)公式.8、A【解析】

根據(jù)雙曲線的標(biāo)準(zhǔn)方程求出右頂點(diǎn)、右焦點(diǎn)的坐標(biāo),再求出過點(diǎn)與的一條漸近線的平行的直線方程,通過解方程組求出點(diǎn)的坐標(biāo),最后利用三角形的面積公式進(jìn)行求解即可.【詳解】由雙曲線的標(biāo)準(zhǔn)方程可知中:,因此右頂點(diǎn)的坐標(biāo)為,右焦點(diǎn)的坐標(biāo)為,雙曲線的漸近線方程為:,根據(jù)雙曲線和漸近線的對稱性不妨設(shè)點(diǎn)作平行的一條漸近線的直線與交于點(diǎn),所以直線的斜率為,因此直線方程為:,因此點(diǎn)的坐標(biāo)是方程組:的解,解得方程組的解為:,即,所以的面積為:.故選:A【點(diǎn)睛】本題考查了雙曲線的漸近線方程的應(yīng)用,考查了兩直線平行的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.9、C【解析】

解一元次二次不等式得或,利用集合的交集運(yùn)算求得.【詳解】因?yàn)榛?,,所以,故選C.【點(diǎn)睛】本題考查集合的交運(yùn)算,屬于容易題.10、D【解析】

根據(jù)雷達(dá)圖對選項(xiàng)逐一分析,由此確定敘述正確的選項(xiàng).【詳解】對于A選項(xiàng),甲的數(shù)據(jù)分析分,乙的數(shù)據(jù)分析分,甲低于乙,故A選項(xiàng)錯(cuò)誤.對于B選項(xiàng),甲的建模素養(yǎng)分,乙的建模素養(yǎng)分,甲低于乙,故B選項(xiàng)錯(cuò)誤.對于C選項(xiàng),乙的六大素養(yǎng)中,邏輯推理分,不是最差,故C選項(xiàng)錯(cuò)誤.對于D選項(xiàng),甲的總得分分,乙的總得分分,所以乙的六大素養(yǎng)整體平均水平優(yōu)于甲,故D選項(xiàng)正確.故選:D【點(diǎn)睛】本小題主要考查圖表分析和數(shù)據(jù)處理,屬于基礎(chǔ)題.11、C【解析】

觀察規(guī)律得根號內(nèi)分母為分子的平方減1,從而求出n.【詳解】解:觀察各式發(fā)現(xiàn)規(guī)律,根號內(nèi)分母為分子的平方減1所以故選:C.【點(diǎn)睛】本題考查了歸納推理,發(fā)現(xiàn)總結(jié)各式規(guī)律是關(guān)鍵,屬于基礎(chǔ)題.12、A【解析】由給定的三視圖可知,該幾何體表示一個(gè)底面為一個(gè)直角三角形,且兩直角邊分別為和,所以底面面積為高為的三棱錐,所以三棱錐的體積為,故選A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

過點(diǎn)做,可得,,由可得,可得,代入可得答案.【詳解】解:如圖,過點(diǎn)做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案為:.【點(diǎn)睛】本題主要考查平面向量的線性運(yùn)算和平面向量的數(shù)量積,由題意作出是解題的關(guān)鍵.14、【解析】

由已知可得?4Sn﹣n(n+3)=0,可得Sn,n=1時(shí),a1=S1=1.當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1.可得:2().利用裂項(xiàng)求和方法即可得出.【詳解】∵⊥,∴?4Sn﹣n(n+3)=0,∴Sn,n=1時(shí),a1=S1=1.當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1.,滿足上式,.∴2().∴數(shù)列{}前2020項(xiàng)和為2(1)=2(1).故答案為:.【點(diǎn)睛】本題考查了向量垂直與數(shù)量積的關(guān)系、數(shù)列遞推關(guān)系、裂項(xiàng)求和方法,考查了推理能力與計(jì)算能力,屬于中檔題.15、【解析】

設(shè)直線的方程為,與聯(lián)立得到A點(diǎn)坐標(biāo),由得,,代入可得,即得解.【詳解】由題意,直線的方程為,與聯(lián)立得,,由得,,從而,即,從而離心率.故答案為:【點(diǎn)睛】本題考查了雙曲線的離心率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.16、【解析】

先設(shè)切點(diǎn),然后對求導(dǎo),根據(jù)切線方程的斜率求出切點(diǎn)的橫坐標(biāo),代入原函數(shù)求出切點(diǎn)的縱坐標(biāo),即可得出切得,最后將切點(diǎn)代入切線方程即可求出實(shí)數(shù)的值.【詳解】解:依題意設(shè)切點(diǎn),因?yàn)?則,又因?yàn)榍€在點(diǎn)處的切線為,,解得,又因?yàn)辄c(diǎn)在第四象限內(nèi),則,.則又因?yàn)辄c(diǎn)在切線上.所以.所以.故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義,以及導(dǎo)數(shù)的運(yùn)算法則和已知切線斜率求出切點(diǎn)坐標(biāo),本題屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)的最小值為【解析】

(1)由題可得函數(shù)的定義域?yàn)?,,?dāng)時(shí),,令,可得;令,可得,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),令,可得;令,可得或,所以函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),恒成立,所以函數(shù)在上單調(diào)遞增.綜上,當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),函數(shù)在上單調(diào)遞增.(2)方法一:當(dāng)時(shí),,,設(shè),,則,所以函數(shù)在上單調(diào)遞減,所以,當(dāng)且僅當(dāng)時(shí)取等號.當(dāng)時(shí),設(shè),則,所以,設(shè),,則,所以函數(shù)在上單調(diào)遞減,且,,所以存在,使得,所以當(dāng)時(shí),;當(dāng)時(shí),,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,因?yàn)椋?,所以,所以,?dāng)且僅當(dāng)時(shí)取等號.所以當(dāng)時(shí),函數(shù)取得最小值,且,故函數(shù)的最小值為.方法二:當(dāng)時(shí),,,則,令,,則,所以函數(shù)在上單調(diào)遞增,又,所以存在,使得,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,因?yàn)椋援?dāng)時(shí),恒成立,所以當(dāng)時(shí),恒成立,所以函數(shù)在上單調(diào)遞減,所以函數(shù)的最小值為.18、(1);(2).【解析】

(1)由橢圓的離心率求出、的值,由此可求得橢圓的方程;(2)設(shè)點(diǎn)、,聯(lián)立直線與橢圓的方程,列出韋達(dá)定理,由題意得出,可得出,【詳解】(1)由題意得,,.又因?yàn)?,,所以橢圓的方程為;(2)由,得.設(shè)、,所以,,依題意,,易知,四邊形為平行四邊形,所以.因?yàn)?,,所?即,將其整理為.因?yàn)?,所以?所以,即.【點(diǎn)睛】本題考查橢圓方程的求法和直線與橢圓位置關(guān)系的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化,考查計(jì)算能力,屬于中等題.19、(1).(2)【解析】

(1)利用導(dǎo)數(shù)的幾何意義求解即可;(2)利用導(dǎo)數(shù)得出的單調(diào)性以及極值,從而得出的圖象,將函數(shù)的零點(diǎn)問題轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)問題,由圖,即可得出實(shí)數(shù)的取值范圍.【詳解】(1)當(dāng)時(shí),,∴切線斜率,又切點(diǎn)∴切線方程為,即.(2),記,令得;∴的情況如下表:2+0單調(diào)遞增極大值單調(diào)遞減當(dāng)時(shí),取極大值又時(shí),;時(shí),若沒有零點(diǎn),即的圖像與直線無公共點(diǎn),由圖像知的取值范圍是.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義的應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)問題,屬于中檔題.20、(1)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;(2),;(3)證明見解析.【解析】

(1)由的正負(fù)可確定的單調(diào)區(qū)間;(2)利用基本不等式可求得時(shí),取得最小值,由導(dǎo)數(shù)的幾何意義可知,從而求得,求得切點(diǎn)坐標(biāo)后,可得到切線方程;(3)由極值點(diǎn)的定義可知是的兩個(gè)不等正根,由判別式大于零得到的取值范圍,同時(shí)得到韋達(dá)定理的形式;化簡為,結(jié)合的范圍可證得結(jié)論.【詳解】(1)由題意得:的定義域?yàn)?,?dāng)時(shí),,,當(dāng)和時(shí),;當(dāng)時(shí),,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.(2),所以(當(dāng)且僅當(dāng),即時(shí)取等號),切線的斜率存在最小值,,解得:,,即切點(diǎn)為,從而切線方程,即:.(3),分別在,處取得極值,,是方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論