版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河北省八所重點中學2025屆數(shù)學高二上期末教學質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若圓與圓相切,則實數(shù)a的值為()A.或0 B.0C. D.或2.彬塔,又稱開元寺塔、彬縣塔,民間稱“雷峰塔”,位于陜西省彬縣城內(nèi)西南紫薇山下.某同學為測量彬塔高度,選取了與塔底在同一水平面內(nèi)的兩個測量基點與,現(xiàn)測得,,,在點測得塔頂?shù)难鼋菫?0°,則塔高()A.30m B.C. D.3.正四棱錐中,,則直線與平面所成角的正弦值為A. B.C. D.4.中國古代數(shù)學著作算法統(tǒng)宗中有這樣一個問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見首日行里數(shù),請公仔細算相還.”其大意為:有一個人走里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,恰好走了天到達目的地,則該人第一天走的路程為()A.里 B.里C.里 D.里5.已知拋物線的焦點為,點在拋物線上,且,則的橫坐標為()A.1 B.C.2 D.36.“冰雹猜想”數(shù)列滿足:,,若,則()A.4 B.3C.2 D.17.數(shù)列1,6,15,28,45,...中的每一項都可用如圖所示的六邊形表示出來,故稱它們?yōu)榱呅螖?shù),那么第10個六邊形數(shù)為()A.153 B.190C.231 D.2768.,則()A. B.C. D.9.設(shè)函數(shù)是定義在上的函數(shù)的導函數(shù),有,若,,則,,的大小關(guān)系是()A. B.C. D.10.已知實數(shù)成等比數(shù)列,則圓錐曲線的離心率為()A. B.2C.或2 D.或11.若在直線上,則直線的一個方向向量為()A. B.C. D.12.已知,則下列三個數(shù),,()A.都不大于-4 B.至少有一個不大于-4C.都不小于-4 D.至少有一個不小于-4二、填空題:本題共4小題,每小題5分,共20分。13.若,均為正數(shù),且,(1)的最大值為;(2)的最小值為;(3)的最小值為;(4)的最小值為,則結(jié)論正確的是__________14.在正項等比數(shù)列中,,,則的公比為___________.15.經(jīng)過點,圓心在x軸正半軸上,半徑為5的圓的方程為________16.若拋物線經(jīng)過點,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)直線經(jīng)過點,且與圓相交與兩點,截得的弦長為,求的方程.18.(12分)在等差數(shù)列{an}中,a3+a4=15,a2a5=54,公差d<0.(1)求數(shù)列{an}的通項公式an;(2)求數(shù)列的前n項和Sn的最大值及相應的n值19.(12分)已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要條件,求m的取值范圍20.(12分)求滿足下列條件的雙曲線的標準方程(1)焦點在x軸上,實軸長為4,實半軸長是虛半軸長的2倍;(2)焦點在y軸上,漸近線方程為,焦距長為21.(12分)新冠肺炎疫情期間,某地為了解本地居民對當?shù)胤酪吖ぷ鞯臐M意度,從本地居民中隨機抽取了1500名居民進行評分(滿分100分),根據(jù)調(diào)查數(shù)據(jù)制成如下表格和頻率分布直方圖.滿意度評分滿意度等級不滿意基本滿意滿意非常滿意(1)求a的值;(2)定義滿意度指數(shù),若,則防疫工作需要進行調(diào)整,否則不需要調(diào)整,根據(jù)所學知識判斷該區(qū)防疫工作是否需要進行調(diào)整?22.(10分)如圖1,在△MBC中,,A,D分別為棱BM,MC的中點,將△MAD沿AD折起到△PAD的位置,使,如圖2,連結(jié)PB,PC,BD(1)求證:平面PAD⊥平面ABCD;(2)若E為PC中點,求直線DE與平面PBD所成角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)給定條件求出兩圓圓心距,再借助兩圓相切的充要條件列式計算作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,而,即點不可能在圓內(nèi),則兩圓必外切,于是得,即,解得,所以實數(shù)a的值為或.故選:D2、D【解析】在△中有,再應用正弦定理求,再在△中,即可求塔高.【詳解】由題設(shè)知:,又,△中,可得,在△中,,則.故選:D3、C【解析】建立合適的空間直角坐標系,求出和平面的法向量,直線與平面所成角的正弦值即為與的夾角的余弦值的絕對值,利用夾角公式求出即可.【詳解】建立如圖所示的空間直角坐標系.有圖知,由題得、、、.,,.設(shè)平面的一個法向量,則,,令,得,,.設(shè)直線與平面所成的角為,則.故選:C.【點睛】本題考查線面角的求解,利用向量法可簡化分析過程,直接用計算的方式解決問題,是基礎(chǔ)題.4、C【解析】建立等比數(shù)列的模型,由等比數(shù)列的前項和公式求解【詳解】記第天走的路程為里,則是等比數(shù)列,,,故選:C5、C【解析】利用拋物線的定義轉(zhuǎn)化為到準線的距離,即可求得.【詳解】拋物線的焦點坐標為,準線方程為,,∴,故選:C.6、A【解析】根據(jù)題意分別假設(shè)為奇數(shù)、偶數(shù)的情況,求出對應的即可.【詳解】由題意知,因為,若為奇數(shù)時,,與為奇數(shù)矛盾,不符合題意;若為偶數(shù)時,,可得,符合題意.不符合故選:A7、B【解析】細心觀察,尋求相鄰項及項與序號之間的關(guān)系,同時聯(lián)系相關(guān)知識,如等差數(shù)列、等比數(shù)列等,結(jié)合圖形可知,,,,,,,據(jù)此即可求解.【詳解】由題意知,數(shù)列的各項為1,6,15,28,45,...所以,,,,,,所以.故選:B【點睛】本題考查合情推理中的歸納推理;考查邏輯推理能力;觀察分析、尋求規(guī)律是求解本題的關(guān)鍵;屬于中檔題、探索型試題.8、B【解析】求出,然后可得答案.【詳解】,所以故選:B9、C【解析】設(shè),求導分析的單調(diào)性,又,,,即可得出答案【詳解】解:設(shè),則,又因為,所以,所以在上單調(diào)遞增,又,,,因為,所以,所以.故選:C10、C【解析】根據(jù)成等比數(shù)列求得,再根據(jù)離心率計算公式即可求得結(jié)果.【詳解】因為實數(shù)成等比數(shù)列,故可得,解得或;當時,表示焦點在軸上的橢圓,此時;當時,表示焦點在軸上的雙曲線,此時.故選:C.11、D【解析】由題意可得首先求出直線上的一個向量,即可得到它的一個方向向量,再利用平面向量共線(平行)的坐標表示即可得出答案【詳解】∵在直線上,∴直線的一個方向向量,又∵,∴是直線的一個方向向量故選:D12、B【解析】利用反證法設(shè),,都大于,結(jié)合基本不等式即可得出結(jié)論.【詳解】設(shè),,都大于,則,由于,故,利用基本不等式可得,當且僅當時等號成立,這與假設(shè)所得結(jié)論矛盾,故假設(shè)不成立,故下列三個數(shù),,至少有一個不大于,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、(1)(2)(4).【解析】利用基本不等式求的最大值可判斷(1);利用“”的妙用以及基本不等式可判斷(2);將所求代數(shù)式轉(zhuǎn)化為關(guān)于的二次函數(shù)結(jié)合由二次函數(shù)的性質(zhì)可得最值判斷C、D,進而可得正確答案.【詳解】對于(1):因為,均為正數(shù),且,則有,當且僅當時等號成立,即的最大值為,故(1)正確;對于(2):因為,當且僅當時等號成立,即的最小值為,故(2)正確;對于(3):因為,所以,在上單調(diào)遞減,無最小值,故(3)不正確;對于(4):,當且僅當時等號成立,即的最小值為,故(4)正確.故答案為:(1)(2)(4).14、3【解析】由題設(shè)知等比數(shù)列公比,根據(jù)已知條件及等比數(shù)列通項公式列方程求公比即可.【詳解】由題設(shè),等比數(shù)列公比,且,所以,可得或(舍),故公比為3.故答案為:315、【解析】設(shè)圓方程為,代入原點計算得到答案.【詳解】設(shè)圓方程為經(jīng)過點,代入圓方程則圓方程為故答案為【點睛】本題考查了圓方程的計算,設(shè)出圓方程是解題的關(guān)鍵.16、2【解析】將點代入拋物線方程即可得出答案.【詳解】解:因為拋物線經(jīng)過點,所以,即.故答案為:2.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、或【解析】直線截圓得的弦長為,結(jié)合圓的半徑為5,利用勾股定理可得圓心到直線的距離,再利用點到直線的距離公式列方程求出直線斜率,由點斜式可得結(jié)果.【詳解】設(shè)直線的方程為,即,因為圓的半徑為5,截得的弦長為所以圓心到直線的距離,即或,∴所求直線的方程為或.【點睛】本題主要考查點到直線距離公式以及圓的弦長的求法,求圓的弦長有兩種方法:一是利用弦長公式,結(jié)合韋達定理求解;二是利用半弦長,弦心距,圓半徑構(gòu)成直角三角形,利用勾股定理求解.18、(1);(2)當或11時,最大值為55.【解析】(1)根據(jù)等差數(shù)列的通項公式得方程組,解這個方程組得公差和首項,從而得數(shù)列的通項公式n.(2)等差數(shù)列的前項和是關(guān)于的二次式,將這個二次式配方即可得最大值.【詳解】(1)由題設(shè),故(舍,此時)或.故,故.(2)由(1)可得,因為,對稱方程為,故當或時,取最大值,此時最大值為.19、.【解析】由x2﹣8x﹣20≤0,解得﹣2≤x≤10.根據(jù)非空集合S={x|1﹣m≤x≤1+m}.又x∈P是x∈S的必要條件,可得,1﹣m≤1+m,解得m范圍【詳解】由x2﹣8x﹣20≤0,解得﹣2≤x≤10.∴P=[﹣2,10]非空集合S={x|1﹣m≤x≤1+m}.又x∈P是x∈S的必要條件,∴,1﹣m≤1+m,解得0≤m≤3∴m的取值范圍是[0,3]【點睛】本題考查了不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題20、(1)(2)【解析】(1)(2)直接由條件解出即可得到雙曲線方程.【小問1詳解】由題意有,解得:,則雙曲線的標準方程為:【小問2詳解】由題意有,解得:,則雙曲線的標準方程為:21、(1)(2)不需要【解析】(1)直接根據(jù)頻率和為1計算得到答案.(2)計算平均值得到得到答案.【小問1詳解】,解得.【小問2詳解】.故不需要進行調(diào)整.22、(1)證明見解析;(2).【解析】(1)推導出,,利用線面垂直的判定定理可得平面,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 地下排水建設(shè)項目材料買賣協(xié)議典范
- 2024技術(shù)顧問服務協(xié)議系列篇
- 2024企業(yè)債務融資協(xié)議模板
- 2024屆安徽鳳臺一中高三3月教學質(zhì)量檢測試題數(shù)學試題理試題
- 2024槽棎施工質(zhì)量保障協(xié)議范本
- 2024年房產(chǎn)開發(fā)融資居間協(xié)議模板
- 2024建筑外保溫服務協(xié)議樣式
- 2024年商業(yè)交易貨樣協(xié)議模板
- 2024年度美容院加盟協(xié)議示例
- 2024全職員工派遣協(xié)議范本
- 反腐倡廉廉潔行醫(yī)
- 質(zhì)量保證體系范文(必備14篇)
- 心血管內(nèi)科醫(yī)療質(zhì)量評價體系與考核標準
- 2022-2023學年廣州市南沙區(qū)小升初全真模擬數(shù)學檢測卷含答案
- 2023年食品安全糧食類理論知識考試題庫(含答案)
- 機械裝備結(jié)構(gòu)設(shè)計PPT完整全套教學課件
- 中國糖尿病患者的白內(nèi)障圍手術(shù)期防治策略專家共識(2020年)
- IATF16949審核員工作職責
- 馬達加斯加地質(zhì)礦產(chǎn)概況
- 2023年關(guān)于農(nóng)村勞動力轉(zhuǎn)移發(fā)展現(xiàn)狀及對策的調(diào)研報告
- 某文化博物館建設(shè)項目可行性研究報告
評論
0/150
提交評論