廣東省河源市連平縣連平中學2025屆數(shù)學高二上期末經(jīng)典試題含解析_第1頁
廣東省河源市連平縣連平中學2025屆數(shù)學高二上期末經(jīng)典試題含解析_第2頁
廣東省河源市連平縣連平中學2025屆數(shù)學高二上期末經(jīng)典試題含解析_第3頁
廣東省河源市連平縣連平中學2025屆數(shù)學高二上期末經(jīng)典試題含解析_第4頁
廣東省河源市連平縣連平中學2025屆數(shù)學高二上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

廣東省河源市連平縣連平中學2025屆數(shù)學高二上期末經(jīng)典試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等比數(shù)列中,,,則等于A. B.C. D.或2.已知兩定點和,動點在直線上移動,橢圓C以A,B為焦點且經(jīng)過點P,則橢圓C的短軸的最小值為()A. B.C. D.3.已知中,內(nèi)角,,的對邊分別為,,,,.若為直角三角形,則的面積為()A. B.C.或 D.或4.已知橢圓的一個焦點坐標為,則的值為()A.1 B.3C.9 D.815.已知P是橢圓上的一點,是橢圓的兩個焦點且,則的面積是()A. B.2C. D.16.若雙曲線(,)的一條漸近線經(jīng)過點,則雙曲線的離心率為()A. B.C. D.27.已知點在拋物線上,則點到拋物線焦點的距離為()A.1 B.2C.3 D.48.在平面直角坐標系中,已知點,,,,直線AP,BP相交于點P,且它們斜率之積是.當時,的最小值為()A. B.C. D.9.已知,若與的展開式中的常數(shù)項相等,則()A.1 B.3C.6 D.910.如圖,四棱錐的底面是矩形,設,,,是棱上一點,且,則()A. B.C. D.11.已知實數(shù),滿足,則的最大值為()A. B.C. D.12.函數(shù)的單調(diào)遞減區(qū)間為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若圓與圓相交,則的取值范圍是__________.14.直線與圓相交于A,B兩點,則______15.近年來,我國外賣業(yè)發(fā)展迅猛,外賣小哥穿梭在城市的大街小巷成為一道道亮麗的風景線.他們根據(jù)外賣平臺提供的信息到外賣店取單,某外賣小哥每天來往于r個外賣店(外賣店的編號分別為1,2,…,r,其中),約定:每天他首先從1號外賣店取單,稱為第1次取單,之后,他等可能的前往其余個外賣店中的任何一個店取單,稱為第2次取單,依此類推.假設從第2次取單開始,他每次都是從上次取單的店之外的個外賣店取單.設事件表示“第k次取單恰好是從1號店取單()”,是事件發(fā)生的概率,顯然,,則______,與的關系式為______16.下圖是個幾何體的展開圖,圖①是由個邊長為的正三角形組成;圖②是由四個邊長為的正三角形和一個邊長為的正方形組成;圖③是由個邊長為的正三角形組成;圖④是由個邊長為的正方形組成.若幾何體能夠穿過直徑為的圓,則該幾何體的展開圖可以是______(填所有正確結論的序號).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)設x=2是函數(shù)f(x)的極值點,求a,并求f(x)的單調(diào)區(qū)間;(2)證明:當時,.18.(12分)已知橢圓的離心率為,點是橢圓E上一點.(1)求E的方程;(2)設過點的動直線與橢圓E相交于兩點,O為坐標原點,求面積的取值范圍.19.(12分)如圖,矩形的兩個頂點位于x軸上,另兩個頂點位于拋物線在x軸上方的曲線上,求矩形面積最大時的邊長.20.(12分)已知橢圓的左頂點、上頂點和右焦點分別為,且的面積為,橢圓上的動點到的最小距離是(1)求橢圓的方程;(2)過橢圓的左頂點作兩條互相垂直的直線交橢圓于不同的兩點(異于點).①證明:動直線恒過軸上一定點;②設線段中點為,坐標原點為,求的面積的最大值.21.(12分)如圖,已知平行六面體中,底面ABCD是邊長為1的正方形,,,設,,(1)用,,表示,并求;(2)求22.(10分)設關于x的不等式的解集為A,關于x的不等式的解集為B(1)求集合A,B;(2)若是的必要不充分條件,求實數(shù)m的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】∵為等比數(shù)列,∴,又∴為的兩個不等實根,∴∴或∴故選D2、B【解析】根據(jù)題意,點關于直線對稱點的性質,以及橢圓的定義,即可求解.【詳解】根據(jù)題意,設點關于直線的對稱點,則,解得,即.根據(jù)橢圓的定義可知,,當、、三點共線時,長軸長取最小值,即,由且,得,因此橢圓C的短軸的最小值為.故選:B.3、C【解析】由正弦定理化角為邊后,由余弦定理求得,然后分類討論:或求解【詳解】由正弦定理,可化為:,即,所以,,所以,又為直角三角形,若,則,,,,若,則,,,故選:C4、A【解析】根據(jù)條件,利用橢圓標準方程中長半軸長a,短半軸長b,半焦距c關系列式計算即得.【詳解】由橢圓的一個焦點坐標為,則半焦距c=2,于是得,解得,所以值為1.故選:A5、A【解析】設,先求出m、n,再利用面積公式即可求解.【詳解】在中,設,則,解得:.因為,所以,所以的面積是.故選:A6、A【解析】先求出漸近線方程,進而將點代入直線方程得到a,b關系,進而求出離心率.【詳解】由題意,雙曲線的漸近線方程為:,而一條漸近線過點,則,.故選:A.7、B【解析】先求出拋物線方程,焦點坐標,再用兩點間距離公式進行求解.【詳解】將代入拋物線中得:,解得:,所以拋物線方程為,焦點坐標為,所以點到拋物線焦點的距離為故選:B8、A【解析】設出點坐標,求得、所在直線的斜率,由斜率之積是列式整理即可得到點的軌跡方程,設,根據(jù)雙曲線的定義,從而求出的最小值;【詳解】解:設點坐標為,則直線的斜率;直線的斜率由已知有,化簡得點的軌跡方程為又,所以點的軌跡方程為,即點的軌跡為以、為頂點的雙曲線的左支(除點),因為,設,由雙曲線的定義可知,所以,當且僅當、、三點共線時取得最小值,因為,所以,所以,即的最小值為;故選:A9、B【解析】根據(jù)二項展開式的通項公式即可求出【詳解】的展開式中的常數(shù)項為,而的展開式中的常數(shù)項為,所以,又,所以故選:B10、B【解析】根據(jù)空間向量基本定理求解【詳解】由已知故選:B11、A【解析】畫出不等式組所表示的平面區(qū)域,利用直線的斜率公式模型進行求解即可.【詳解】不等式組表示的平面區(qū)域如下圖所示:,代數(shù)式表示不等式組所表示的平面區(qū)域內(nèi)的點與點連線的斜率,由圖象可知:直線的斜率最大,由,即,即的最大值為:,因此的最大值為,故選:A12、A【解析】先求定義域,再由導數(shù)小于零即可求得函數(shù)的單調(diào)遞減區(qū)間.【詳解】由得,所以函數(shù)的定義域為,又,因為,所以由得,解得,所以函數(shù)的單調(diào)遞減區(qū)間為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)圓心距小于兩半徑之和,大于兩半徑之差的絕對值列出不等式解出即可.【詳解】圓的圓心為原點,半徑為,圓,即的圓心為,半徑為,由于兩圓相交,故,即,解得,即的取值范圍是,故答案為:14、6【解析】利用弦心距、半徑與弦長的幾何關系,結合點線距離公式即可求弦長.【詳解】由題設,圓心為,則圓心到直線距離為,又圓的半徑為,故.故答案為:15、①.②.【解析】根據(jù)題意,結合條件概率的計算公式,即可求解.【詳解】根據(jù)題意,事件表示“第3次取單恰好是從1號店取單”,因此;同理故答案為:;.16、①【解析】根據(jù)幾何體展開圖可知①正四面體、②正四棱錐、③正八面體、④正方體,進而求其外接球半徑,并與比較大小,即可確定答案.【詳解】①由題設,幾何體為棱長為的正四面體,該正四面體可放入一個正方體中,且正方體的棱長為,該正四面體的外接球半徑為,滿足要求;②由題設,幾何體為棱長為的正四棱錐,如下圖所示:設,連接,則為、的中點,因為四邊形是邊長為的正方形,則,所以,,所以,,所以,,,所以點為正四棱錐的外接球球心,且該球的半徑為,不滿足要求;③由題設,幾何體為棱長為的正八面體,該正八面體可由兩個共底面,且棱長均為的正四棱錐拼接而成,由②可知,該正八面體的外接球半徑為,不滿足要求;④由題設,幾何體為棱長為的正方體,其外接球半徑為,不滿足要求;故答案為:①.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)證明見解析;【解析】(1)求出函數(shù)的定義域與導函數(shù),依題意可得,即可求出參數(shù)的值,再根據(jù)導函數(shù)與函數(shù)的單調(diào)性的關系求出函數(shù)的單調(diào)區(qū)間;(2)依題意可得,令,即證,,又,所以即證,令,利用導數(shù)說明其單調(diào)性,即可得解;【詳解】解:(1)因為,定義域為,所以,因為是函數(shù)的極值點,所以,所以,解得,所以,令,則,所以在上單調(diào)遞增,又,所以當時,,即,所以在上單調(diào)遞減,當時,,即,所以上單調(diào)遞增,綜上可得的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)證明:依題意即證,即證,令,則,所以即證,因為,所以即證,令,則,所以當時,,當時,所以,所以,所以當時,18、(1);(2).【解析】(1)列出關于a、b、c的方程組即可求解;(2)根據(jù)題意,直線l斜率存在,設其方程為,代入橢圓方程消去y得到關于x的二次方程,根據(jù)韋達定理得到根與系數(shù)的關系,求出PQ長度,求出原點到l的距離,根據(jù)三角形面積公式表示出△OPQ的面積,利用基本不等式求解其范圍即可.【小問1詳解】由題設知,解得.∴橢圓E的方程為;【小問2詳解】當軸時不合題意,故可設,則,得.由題意知,即,得.從而.又點O到直線的距離,∴,令,則,,,所求面積的取值范圍為.19、當矩形面積最大時,矩形邊AB長,BC長【解析】先設出點坐標,進而表示出矩形的面積,通過求導可求出其最大面積.【詳解】設點,那么矩形面積,.令解得(負舍).所以S在(0,)上單調(diào)遞增,在(,2)上單調(diào)遞;..所以當時,S有最大值.此時答:當矩形面積最大時,矩形邊AB長,BC長.20、(1)(2)①證明見解析;②【解析】(1)根據(jù)題意得,,解方程即可;(2)①設直線:,直線:,聯(lián)立曲線分別求出點和的坐標,求直線方程判斷定點即可;②根據(jù)題意得,代入求最值即可.【小問1詳解】根據(jù)題意得,,,又,三個式子聯(lián)立解得,,,所以橢圓的方程為:【小問2詳解】①證明:設兩條直線分別為和,根據(jù)題意和得斜率存在且不等于;因為,所以設直線:,直線:;由,解得,所以,同理,.當時,,所以直線的方程為:,整理得,此時直線過定點;當時,直線的方程為:,此時直線過定點,故直線恒過定點.②根據(jù)題意得,,,,所以,當且僅當,即時等號成立,故的面積的最大值為:.【點睛】解決直線與橢圓綜合問題時,要注意:(1)注意觀察應用題設中的每一個條件,明確確定直線、橢圓的條件;(2)強化有關直線與橢圓聯(lián)立得出一元二次方程后的運算能力,重視根與系數(shù)之間的關系、弦長、斜率、三角形的面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論