版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆寧夏石嘴山三中高三第二次高考模擬數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在三棱柱中,底面為正三角形,側(cè)棱垂直底面,.若分別是棱上的點(diǎn),且,,則異面直線與所成角的余弦值為()A. B. C. D.2.函數(shù)的值域?yàn)椋ǎ〢. B. C. D.3.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.4.函數(shù)的圖象大致為()A. B.C. D.5.已知展開式的二項(xiàng)式系數(shù)和與展開式中常數(shù)項(xiàng)相等,則項(xiàng)系數(shù)為()A.10 B.32 C.40 D.806.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽數(shù),黑點(diǎn)為陰數(shù),若從陰數(shù)和陽數(shù)中各取一數(shù),則其差的絕對值為5的概率為A. B. C. D.7.已知拋物線上的點(diǎn)到其焦點(diǎn)的距離比點(diǎn)到軸的距離大,則拋物線的標(biāo)準(zhǔn)方程為()A. B. C. D.8.“角谷猜想”的內(nèi)容是:對于任意一個大于1的整數(shù),如果為偶數(shù)就除以2,如果是奇數(shù),就將其乘3再加1,執(zhí)行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.99.二項(xiàng)式展開式中,項(xiàng)的系數(shù)為()A. B. C. D.10.已知集合,則=A. B. C. D.11.等比數(shù)列的前項(xiàng)和為,若,,,,則()A. B. C. D.12.設(shè)函數(shù)若關(guān)于的方程有四個實(shí)數(shù)解,其中,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將函數(shù)的圖像向右平移個單位,得到函數(shù)的圖像,則函數(shù)在區(qū)間上的值域?yàn)開_________.14.已知數(shù)列的前項(xiàng)和為,,則滿足的正整數(shù)的值為______.15.已知數(shù)列的前項(xiàng)和為,且成等差數(shù)列,,數(shù)列的前項(xiàng)和為,則滿足的最小正整數(shù)的值為______________.16.已知函數(shù)是定義在上的奇函數(shù),其圖象關(guān)于直線對稱,當(dāng)時,(其中是自然對數(shù)的底數(shù),若,則實(shí)數(shù)的值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若函數(shù)的圖象與軸有且只有一個公共點(diǎn),求實(shí)數(shù)的取值范圍;(2)若對任意成立,求實(shí)數(shù)的取值范圍.18.(12分)已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,滿足,,,,恰為等比數(shù)列的前3項(xiàng).(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和為;若對均滿足,求整數(shù)的最大值;(3)是否存在數(shù)列滿足等式成立,若存在,求出數(shù)列的通項(xiàng)公式;若不存在,請說明理由.19.(12分)已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且是與的等差中項(xiàng).(1)證明:為等差數(shù)列,并求;(2)設(shè),數(shù)列的前項(xiàng)和為,求滿足的最小正整數(shù)的值.20.(12分)已知數(shù)列滿足(),數(shù)列的前項(xiàng)和,(),且,.(1)求數(shù)列的通項(xiàng)公式:(2)求數(shù)列的通項(xiàng)公式.(3)設(shè),記是數(shù)列的前項(xiàng)和,求正整數(shù),使得對于任意的均有.21.(12分)在平面直角坐標(biāo)系中,設(shè),過點(diǎn)的直線與圓相切,且與拋物線相交于兩點(diǎn).(1)當(dāng)在區(qū)間上變動時,求中點(diǎn)的軌跡;(2)設(shè)拋物線焦點(diǎn)為,求的周長(用表示),并寫出時該周長的具體取值.22.(10分)如圖,在四棱錐中,底面是直角梯形且∥,側(cè)面為等邊三角形,且平面平面.(1)求平面與平面所成的銳二面角的大小;(2)若,且直線與平面所成角為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
建立空間直角坐標(biāo)系,利用向量法計算出異面直線與所成角的余弦值.【詳解】依題意三棱柱底面是正三角形且側(cè)棱垂直于底面.設(shè)的中點(diǎn)為,建立空間直角坐標(biāo)系如下圖所示.所以,所以.所以異面直線與所成角的余弦值為.故選:B【點(diǎn)睛】本小題主要考查異面直線所成的角的求法,屬于中檔題.2、A【解析】
由計算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的值域.【詳解】,,,因此,函數(shù)的值域?yàn)?故選:A.【點(diǎn)睛】本題考查正弦型函數(shù)在區(qū)間上的值域的求解,解答的關(guān)鍵就是求出對象角的取值范圍,考查計算能力,屬于基礎(chǔ)題.3、D【解析】
根據(jù)面面垂直的判定定理,對選項(xiàng)中的命題進(jìn)行分析、判斷正誤即可.【詳解】對于A,當(dāng),,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當(dāng),,時,則,故不能作為的充分條件,故B錯誤;對于C,當(dāng),,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當(dāng),,,則一定能得到,故D正確.故選:D.【點(diǎn)睛】本題考查了面面垂直的判斷問題,屬于基礎(chǔ)題.4、A【解析】
確定函數(shù)在定義域內(nèi)的單調(diào)性,計算時的函數(shù)值可排除三個選項(xiàng).【詳解】時,函數(shù)為減函數(shù),排除B,時,函數(shù)也是減函數(shù),排除D,又時,,排除C,只有A可滿足.故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過解析式研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等等排除,可通過特殊的函數(shù)值,函數(shù)值的正負(fù),函數(shù)值的變化趨勢排除,最后剩下的一個即為正確選項(xiàng).5、D【解析】
根據(jù)二項(xiàng)式定理通項(xiàng)公式可得常數(shù)項(xiàng),然后二項(xiàng)式系數(shù)和,可得,最后依據(jù),可得結(jié)果.【詳解】由題可知:當(dāng)時,常數(shù)項(xiàng)為又展開式的二項(xiàng)式系數(shù)和為由所以當(dāng)時,所以項(xiàng)系數(shù)為故選:D【點(diǎn)睛】本題考查二項(xiàng)式定理通項(xiàng)公式,熟悉公式,細(xì)心計算,屬基礎(chǔ)題.6、A【解析】
陽數(shù):,陰數(shù):,然后分析陰數(shù)和陽數(shù)差的絕對值為5的情況數(shù),最后計算相應(yīng)概率.【詳解】因?yàn)殛枖?shù):,陰數(shù):,所以從陰數(shù)和陽數(shù)中各取一數(shù)差的絕對值有:個,滿足差的絕對值為5的有:共個,則.故選:A.【點(diǎn)睛】本題考查實(shí)際背景下古典概型的計算,難度一般.古典概型的概率計算公式:.7、B【解析】
由拋物線的定義轉(zhuǎn)化,列出方程求出p,即可得到拋物線方程.【詳解】由拋物線y2=2px(p>0)上的點(diǎn)M到其焦點(diǎn)F的距離比點(diǎn)M到y(tǒng)軸的距離大,根據(jù)拋物線的定義可得,,所以拋物線的標(biāo)準(zhǔn)方程為:y2=2x.故選B.【點(diǎn)睛】本題考查了拋物線的簡單性質(zhì)的應(yīng)用,拋物線方程的求法,屬于基礎(chǔ)題.8、B【解析】
模擬程序運(yùn)行,觀察變量值可得結(jié)論.【詳解】循環(huán)前,循環(huán)時:,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,滿足條件,退出循環(huán),輸出.故選:B.【點(diǎn)睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu),解題時可模擬程序運(yùn)行,觀察變量值,從而得出結(jié)論.9、D【解析】
寫出二項(xiàng)式的通項(xiàng)公式,再分析的系數(shù)求解即可.【詳解】二項(xiàng)式展開式的通項(xiàng)為,令,得,故項(xiàng)的系數(shù)為.故選:D【點(diǎn)睛】本題主要考查了二項(xiàng)式定理的運(yùn)算,屬于基礎(chǔ)題.10、C【解析】
本題考查集合的交集和一元二次不等式的解法,滲透了數(shù)學(xué)運(yùn)算素養(yǎng).采取數(shù)軸法,利用數(shù)形結(jié)合的思想解題.【詳解】由題意得,,則.故選C.【點(diǎn)睛】不能領(lǐng)會交集的含義易致誤,區(qū)分交集與并集的不同,交集取公共部分,并集包括二者部分.11、D【解析】試題分析:由于在等比數(shù)列中,由可得:,又因?yàn)椋杂校菏欠匠痰亩?shí)根,又,,所以,故解得:,從而公比;那么,故選D.考點(diǎn):等比數(shù)列.12、B【解析】
畫出函數(shù)圖像,根據(jù)圖像知:,,,計算得到答案.【詳解】,畫出函數(shù)圖像,如圖所示:根據(jù)圖像知:,,故,且.故.故選:.【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)問題,意在考查學(xué)生的計算能力和應(yīng)用能力,畫出圖像是解題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)圖像的平移變換得到函數(shù)的解析式,再利用整體思想求函數(shù)的值域.【詳解】函數(shù)的圖像向右平移個單位得,,,.故答案為:.【點(diǎn)睛】本題考查三角函數(shù)圖像的平移變換、值域的求解,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時注意整體思想的運(yùn)用.14、6【解析】
已知,利用,求出通項(xiàng),然后即可求解【詳解】∵,∴當(dāng)時,,∴;當(dāng)時,,∴,故數(shù)列是首項(xiàng)為-2,公比為2的等比數(shù)列,∴.又,∴,∴,∴.【點(diǎn)睛】本題考查通項(xiàng)求解問題,屬于基礎(chǔ)題15、1【解析】
本題先根據(jù)公式初步找到數(shù)列的通項(xiàng)公式,然后根據(jù)等差中項(xiàng)的性質(zhì)可解得的值,即可確定數(shù)列的通項(xiàng)公式,代入數(shù)列的表達(dá)式計算出數(shù)列的通項(xiàng)公式,然后運(yùn)用裂項(xiàng)相消法計算出前項(xiàng)和,再代入不等式進(jìn)行計算可得最小正整數(shù)的值.【詳解】由題意,當(dāng)時,.當(dāng)時,.則,.,,成等差數(shù)列,,即,解得..,...,.即,,即,,,,即.滿足的最小正整數(shù)的值為1.故答案為:1.【點(diǎn)睛】本題主要考查數(shù)列求通項(xiàng)公式、裂項(xiàng)相消法求前項(xiàng)和,考查了轉(zhuǎn)化思想、方程思想,考查了不等式的計算、邏輯思維能力和數(shù)學(xué)運(yùn)算能力.16、【解析】
先推導(dǎo)出函數(shù)的周期為,可得出,代值計算,即可求出實(shí)數(shù)的值.【詳解】由于函數(shù)是定義在上的奇函數(shù),則,又該函數(shù)的圖象關(guān)于直線對稱,則,所以,,則,所以,函數(shù)是周期為的周期函數(shù),所以,解得.故答案為:.【點(diǎn)睛】本題考查利用函數(shù)的對稱性計算函數(shù)值,解題的關(guān)鍵就是結(jié)合函數(shù)的奇偶性與對稱軸推導(dǎo)出函數(shù)的周期,考查推理能力與計算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)求出及其導(dǎo)函數(shù),利用研究的單調(diào)性和最值,根據(jù)零點(diǎn)存在定理和零點(diǎn)定義可得的范圍.(2)令,題意說明時,恒成立.同樣求出導(dǎo)函數(shù),由研究的單調(diào)性,通過分類討論可得的單調(diào)性得出結(jié)論.【詳解】解(1)函數(shù)所以討論:①當(dāng)時,無零點(diǎn);②當(dāng)時,,所以在上單調(diào)遞增.取,則又,所以,此時函數(shù)有且只有一個零點(diǎn);③當(dāng)時,令,解得(舍)或當(dāng)時,,所以在上單調(diào)遞減;當(dāng)時,所以在上單調(diào)遞增.據(jù)題意,得,所以(舍)或綜上,所求實(shí)數(shù)的取值范圍為.(2)令,根據(jù)題意知,當(dāng)時,恒成立.又討論:①若,則當(dāng)時,恒成立,所以在上是增函數(shù).又函數(shù)在上單調(diào)遞增,在上單調(diào)遞增,所以存在使,不符合題意.②若,則當(dāng)時,恒成立,所以在上是增函數(shù),據(jù)①求解知,不符合題意.③若,則當(dāng)時,恒有,故在上是減函數(shù),于是“對任意成立”的充分條件是“”,即,解得,故綜上,所求實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查函數(shù)零點(diǎn)問題,考查不等式恒成立問題,考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.解題關(guān)鍵是通過分類討論研究函數(shù)的單調(diào)性.本題難度較大,考查掌握轉(zhuǎn)化與化歸思想,考查學(xué)生分析問題解決問題的能力.18、(2),(2),的最大整數(shù)是2.(3)存在,【解析】
(2)由可得(),然后把這兩個等式相減,化簡得,公差為2,因?yàn)椋?,為等比?shù)列,所以,化簡計算得,,從而得到數(shù)列的通項(xiàng)公式,再計算出,,,從而可求出數(shù)列的通項(xiàng)公式;(2)令,化簡計算得,從而可得數(shù)列是遞增的,所以只要的最小值大于即可,而的最小值為,所以可得答案;(3)由題意可知,,即,這個可看成一個數(shù)列的前項(xiàng)和,再寫出其前()項(xiàng)和,兩式相減得,,利用同樣的方法可得.【詳解】解:(2)由題,當(dāng)時,,即當(dāng)時,①②①-②得,整理得,又因?yàn)楦黜?xiàng)均為正數(shù)的數(shù)列.故是從第二項(xiàng)的等差數(shù)列,公差為2.又恰為等比數(shù)列的前3項(xiàng),故,解得.又,故,因?yàn)橐渤闪ⅲ适且詾槭醉?xiàng),2為公差的等差數(shù)列.故.即2,4,8恰為等比數(shù)列的前3項(xiàng),故是以為首項(xiàng),公比為的等比數(shù)列,故.綜上,(2)令,則所以數(shù)列是遞增的,若對均滿足,只要的最小值大于即可因?yàn)榈淖钚≈禐?,所以,所以的最大整?shù)是2.(3)由,得,③④③-④得,⑤,⑥⑤-⑥得,,所以存在這樣的數(shù)列,【點(diǎn)睛】此題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式,最值,恒成立問題,考查了推理能力與計算能力,屬于中檔題.19、(1)見解析,(2)最小正整數(shù)的值為35.【解析】
(1)由等差中項(xiàng)可知,當(dāng)時,得,整理后可得,從而證明為等差數(shù)列,繼而可求.(2),則可求出,令,即可求出的取值范圍,進(jìn)而求出最小值.【詳解】解析:(1)由題意可得,當(dāng)時,,∴,,當(dāng)時,,整理可得,∴是首項(xiàng)為1,公差為1的等差數(shù)列,∴,.(2)由(1)可得,∴,解得,∴最小正整數(shù)的值為35.【點(diǎn)睛】本題考查了等差中項(xiàng),考查了等差數(shù)列的定義,考查了與的關(guān)系,考查了裂項(xiàng)相消求和.當(dāng)已知有與的遞推關(guān)系時,常代入進(jìn)行整理.證明數(shù)列是等差數(shù)列時,一般借助數(shù)列,即后一項(xiàng)與前一項(xiàng)的差為常數(shù).20、(1)().(2),.(3)【解析】
(1)依題意先求出,然后根據(jù),求出的通項(xiàng)公式為,再檢驗(yàn)的情況即可;(2)由遞推公式,得,結(jié)合數(shù)列性質(zhì)可得數(shù)列相鄰項(xiàng)之間的關(guān)系,從而可求出結(jié)果;(3)通過(1)、(2)可得,所以,,,,.記,利用函數(shù)單調(diào)性可求的范圍,從而列不等式可解.【詳解】解:(1)因?yàn)閿?shù)列滿足()①;②當(dāng)時,.檢驗(yàn)當(dāng)時,成立.所以,數(shù)列的通項(xiàng)公式為().(2)由,得,①所以,.②由①②,得,,即,,③所以,,.④由③④,得,,因?yàn)?所以,上式同除以,得,,即,所以,數(shù)列時首項(xiàng)為1,公差為1的等差數(shù)列,故,.(3)因?yàn)椋?,,,.記,當(dāng)時,.所以,當(dāng)時,數(shù)列為單調(diào)遞減,當(dāng)時,.從而,當(dāng)時,.因此,.所以,對任意的,.綜上,.【點(diǎn)睛】本題考在數(shù)列通項(xiàng)公式的求法、等差數(shù)列的定義及通項(xiàng)公式、數(shù)列的單調(diào)性,考查考生的邏輯思維能力、運(yùn)算求解能力以及化歸與轉(zhuǎn)化思想、分類討論思想.21、(1).(2)的周長為,時,的周長為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療器械2025年度信息安全與隱私保護(hù)合同3篇
- 二零二五年度車輛抵押擔(dān)保擔(dān)保公司服務(wù)合同范本3篇
- 基于二零二五年度的智能家居技術(shù)服務(wù)合同2篇
- 二零二五版EPS線條工程節(jié)能評估與認(rèn)證合同3篇
- 二零二五版桉樹種植撫育及產(chǎn)品回收合同3篇
- 二零二五年度特色餐廳股權(quán)置換合同協(xié)議書3篇
- 二零二五年度航空貨運(yùn)服務(wù)保障合同3篇
- 二零二五版鍋爐安全檢查與安裝服務(wù)合同范本3篇
- 二零二五版綠色建筑專用管樁購銷及環(huán)保合同3篇
- 二零二五版智能穿戴設(shè)備檢測與認(rèn)證合同3篇
- 2023年信息處理技術(shù)員教程
- 稽核管理培訓(xùn)
- 電梯曳引機(jī)生銹處理方案
- 電力電纜故障分析報告
- 中國電信網(wǎng)絡(luò)資源管理系統(tǒng)介紹
- 2024年浙江首考高考選考技術(shù)試卷試題真題(答案詳解)
- 《品牌形象設(shè)計》課件
- 倉庫管理基礎(chǔ)知識培訓(xùn)課件1
- 藥品的收貨與驗(yàn)收培訓(xùn)課件
- GH-T 1388-2022 脫水大蒜標(biāo)準(zhǔn)規(guī)范
- 高中英語人教版必修第一二冊語境記單詞清單
評論
0/150
提交評論