版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
陜西省安康市漢濱高中2025屆高二上數(shù)學(xué)期末檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的左、右焦點分別為,過點的直線與圓相切于點,交雙曲線的右支于點,且點是線段的中點,則雙曲線的漸近線方程為()A. B.C. D.2.已知函數(shù)在定義域內(nèi)單調(diào)遞減,則實數(shù)的取值范圍是()A. B.C. D.3.已知空間向量,則()A. B.C. D.4.已知空間向量,,,下列命題中正確的個數(shù)是()①若與共線,與共線,則與共線;②若,,非零且共面,則它們所在的直線共面;⑧若,,不共面,那么對任意一個空間向量,存在唯一有序?qū)崝?shù)組,使得;④若,不共線,向量,則可以構(gòu)成空間的一個基底.A.0 B.1C.2 D.35.雙曲線的焦點坐標(biāo)是()A. B.C. D.6.已知拋物線,為坐標(biāo)原點,以為圓心的圓交拋物線于、兩點,交準(zhǔn)線于、兩點,若,,則拋物線方程為()A. B.C. D.7.直線在y軸上的截距為()A. B.C. D.8.從0,1,2,3,4,5這六個數(shù)字中,任取兩個不同數(shù)字構(gòu)成平面直角坐標(biāo)系內(nèi)點的橫、縱坐標(biāo),其中不在軸上的點有()A.36個 B.30個C.25個 D.20個9.等差數(shù)列中,為其前項和,,則的值為()A.13 B.16C.104 D.20810.若雙曲線的離心率為3,則的最小值為()A. B.1C. D.211.已知動圓M與直線y=2相切,且與定圓C:外切,求動圓圓心M的軌跡方程A. B.C. D.12.雙曲線的左頂點為,右焦點,若直線與該雙曲線交于、兩點,為等腰直角三角形,則該雙曲線離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某公司青年、中年、老年員工的人數(shù)之比為10∶8∶7,從中抽取100名作為樣本,若每人被抽中的概率是0.2,則該公司青年員工的人數(shù)為__________14.寫出一個與橢圓有公共焦點的橢圓方程__________15.在長方體中,M、N分別是BC、的中點,若,則______16.雙曲線的一條漸近線的一個方向向量為,則______(寫出一個即可)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè),為雙曲線:(,)的左、右頂點,直線過右焦點且與雙曲線的右支交于,兩點,當(dāng)直線垂直于軸時,△為等腰直角三角形(1)求雙曲線的離心率;(2)若雙曲線左支上任意一點到右焦點點距離的最小值為3,①求雙曲線方程;②已知直線,分別交直線于,兩點,當(dāng)直線傾斜角變化時,以為直徑的圓是否過軸上的定點,若過定點,求出定點的坐標(biāo);若不過定點,請說明理由18.(12分)已知數(shù)列滿足,,,.從①,②這兩個條件中任選一個填在橫線上,并完成下面問題.(1)寫出、,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.19.(12分)某省電視臺為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示:其中一個數(shù)字被污損.(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率.(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對成語知識的學(xué)習(xí)積累的熱情,從中獲益匪淺.現(xiàn)從觀看該節(jié)目的觀眾中隨機統(tǒng)計了4位觀眾的周均學(xué)習(xí)成語知識的時間(單位:小時)與年齡(單位:歲),并制作了對照表(如下表所示)年齡(歲)20304050周均學(xué)習(xí)成語知識時間(小時)2.5344.5由表中數(shù)據(jù),試求線性回歸方程,并預(yù)測年齡為55歲觀眾周均學(xué)習(xí)成語知識時間.參考公式:,.20.(12分)如圖,在正四棱柱中,,,點在棱上,且平面(1)求的值;(2)若,求二面角的余弦值21.(12分)已知數(shù)列中,,且滿足(1)求證數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前n項和22.(10分)已知等差數(shù)列滿足,.(1)求的通項公式;(2)設(shè),求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】焦點三角形問題,可結(jié)合為三角形的中位線,判斷:焦點三角形為直角三角形,并且有,,可由勾股定理得出關(guān)系,從而得到關(guān)系,從而求得漸近線方程.【詳解】由題意知,,且點是線段的中點,點是線段的中點,為三角形的中位線故,故,由雙曲線定義有由勾股定理有故則則,故故漸近線方程為:故選:D【點睛】雙曲線上一點與兩焦點構(gòu)成的三角形,稱為雙曲線的焦點三角形,與焦點三角形有關(guān)的計算或證明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的關(guān)系2、D【解析】由題意轉(zhuǎn)化為,恒成立,參變分離后轉(zhuǎn)化為,求函數(shù)的最大值,即可求解.【詳解】函數(shù)的定義域是,,若函數(shù)在定義域內(nèi)單調(diào)遞減,即在恒成立,所以,恒成立,即設(shè),,當(dāng)時,函數(shù)取得最大值1,所以.故選:D3、A【解析】求得,即可得出.【詳解】,,,.故選:A.4、B【解析】用向量共線或共面的基本定理即可判斷.【詳解】若與,與共線,,則不能判定,故①錯誤;若非零向量共面,則向量可以在一個與組成的平面平行的平面上,故②錯誤;不共面,意味著它們都是非零向量,可以作為一組基底,故③正確;,∴與共面,故不能組成一個基底,故④錯誤;故選:C.5、B【解析】根據(jù)雙曲線的方程,求得,結(jié)合雙曲線的幾何性質(zhì),即可求解.【詳解】由題意,雙曲線,可得,所以,且雙曲線的焦點再軸上,所以雙曲線的焦點坐標(biāo)為.故選:B.6、C【解析】設(shè)圓的半徑為,根據(jù)已知條件可得出關(guān)于的方程,求出正數(shù)的值,即可得出拋物線的方程.【詳解】設(shè)圓的半徑為,拋物線的準(zhǔn)線方程為,由勾股定理可得,因為,將代入拋物線方程得,可得,不妨設(shè)點,則,所以,,解得,因此,拋物線的方程為.故選:C.7、D【解析】將代入直線方程求y值即可.【詳解】令,則,得.所以直線在y軸上的截距為.故選:D8、C【解析】根據(jù)點不在y軸上,分2類根據(jù)分類加法計數(shù)原理求解.【詳解】因為點不在軸上,所以點的橫坐標(biāo)不能為0,分兩類考慮,第一類含0且為點的縱坐標(biāo),共有個點,第二類坐標(biāo)不含0的點,共有個點,根據(jù)分類加法計數(shù)原理可得共有個點.故選:C9、D【解析】利用等差數(shù)列下標(biāo)的性質(zhì),結(jié)合等差數(shù)列前項和公式進行求解即可.【詳解】由,所以,故選:D10、D【解析】由雙曲線的離心率為3和,求得,化簡,結(jié)合基本不等式,即可求解.【詳解】由題意,雙曲線的離心率為3,即,即,又由,可得,所以,當(dāng)且僅當(dāng),即時,“”成立.故選:D【點睛】使用基本不等式解答問題的策略:1、利用基本不等式求最值時,要注意三點:一是各項為正;二是尋求定值;三是考慮等號成立的條件;2、若多次使用基本不等式時,容易忽視等號的條件的一致性,導(dǎo)致錯解;3、巧用“拆”“拼”“湊”:在使用基本不等式時,要特別注意“拆”“拼”“湊”等技巧,使其滿足基本不等式中的“正、定、等”的條件.11、D【解析】由題意動圓M與直線y=2相切,且與定圓C:外切∴動點M到C(0,-3)的距離與到直線y=3的距離相等由拋物線的定義知,點M的軌跡是以C(0,-3)為焦點,直線y=3為準(zhǔn)線的拋物線故所求M的軌跡方程為考點:軌跡方程12、A【解析】求出,分析可得,可得出關(guān)于、、的齊次等式,由此可求得該雙曲線的離心率的值.【詳解】聯(lián)立,可得,則,易知點、關(guān)于軸對稱,且為線段的中點,則,又因為為等腰直角三角形,所以,,即,即,所以,,可得,因此,該雙曲線的離心率為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、200【解析】先根據(jù)分層抽樣的方法計算出該單位青年職工應(yīng)抽取的人數(shù),進而算出青年職工的總?cè)藬?shù).【詳解】由題意,從中抽取100名員工作為樣本,需要從該單位青年職工中抽?。ㄈ耍?因為每人被抽中的概率是0.2,所以青年職工共有(人).故答案:200.14、(答案不唯一)【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程,以及分析即可【詳解】由題可知橢圓的形式應(yīng)為(,且),可取故答案為:(答案不唯一)15、-2【解析】作出圖像,根據(jù)幾何關(guān)系,結(jié)合空間向量的加減法運算法則即可求解.【詳解】,∴,,,故答案為:-2.16、(答案不唯一)【解析】寫出雙曲線的漸近線方程,結(jié)合方向向量的定義求即可.【詳解】由題設(shè),雙曲線的漸近線方程為,又是一條漸近線的一個方向向量,所以或或或,所以或.故答案為:(答案不唯一)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)①;②定點有兩個,【解析】(1)由雙曲線方程有、、,根據(jù)已知條件有,即可求離心率.(2)①由題設(shè)有,結(jié)合(1)求雙曲線參數(shù),寫出雙曲線方程即可;②由題設(shè)可設(shè)為,,,聯(lián)立雙曲線方程結(jié)合韋達定理求,,,,再由、的方程求,坐標(biāo),若在為直徑的圓上點,由結(jié)合向量垂直的坐標(biāo)表示列方程,進而求出定點坐標(biāo).【小問1詳解】由題設(shè),若,且,又△為等腰直角三角形,∴,即,則又,可得.【小問2詳解】由題設(shè),,由(1)有,則,即,①由上可知:雙曲線方程為.②由①知:,且直線的斜率不為0,設(shè)為,,,聯(lián)立直線與雙曲線得:,∴,,則,∴,∴直線為;直線為;∴,,若在為直徑的圓上點,∴,且,∴,令,則,∴,即,∴或,即過定點.【點睛】關(guān)鍵點點睛:第二問的②,設(shè)直線為,聯(lián)立直線與雙曲線,應(yīng)用韋達定理求,,,,進而根據(jù)、的方程求,坐標(biāo),再由圓的性質(zhì)及向量垂直的坐標(biāo)表示求定點坐標(biāo).18、(1)條件選擇見解析,,,(2)【解析】(1)選①,推導(dǎo)出數(shù)列為等比數(shù)列,確定該數(shù)列的首項和公比,可求得,并可求得、;選②,推導(dǎo)出數(shù)列是等比數(shù)列,確定該數(shù)列的首項和公比,可求得,可求得,由此可得出、;(2)求得,,分為偶數(shù)、奇數(shù)兩種情況討論,結(jié)合并項求和法以及等比數(shù)列求和公式可求得.【小問1詳解】解:若選①,,且,故數(shù)列是首項為,公比為的等比數(shù)列,,故;若選②,,所以,,且,故數(shù)列是以為首項,以為公比的等比數(shù)列,所以,,故,所以,,故,.【小問2詳解】解:由(1)可知,則,所以,.當(dāng)為偶數(shù)時,;當(dāng)為奇數(shù)時,.綜上所述,.19、(1);(2)詳見解析.【解析】(1)先根據(jù)兩個平均值的大小得到的取值范圍,再利用古典概型的概率公式進行求解;(2)先利用最小二乘法求出線性回歸方程,再利用方程進行預(yù)測.試題解析:(1)設(shè)被污損的數(shù)字為,則的所有可能取值為:0,1,2,3,4,5,6,7,8,9共10種等可能結(jié)果,令,解得,則滿足“東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的”的取值有0,1,2,3,4,5,6,7共8個,所以其概率為.(2)由表中數(shù)據(jù)得,,∴,線性回歸方程.可預(yù)測年齡為55觀眾周均學(xué)習(xí)成語知識時間為4.9小時.20、(1)答案見解析;(2).【解析】如圖,以點為原點,,,的方向分別為,,軸的正方向,建立空間直角坐標(biāo)系,(1)設(shè),由平面,可得,從而數(shù)量積為零,可求出的值,進而可求得的值;(2)利用空間向量求二面角的余弦值【詳解】解:(1)如圖,以點為原點,,,的方向分別為,,軸的正方向,建立空間直角坐標(biāo)系,設(shè),則點,,,則,因為平面,所以,所以,解得或當(dāng)時,,,;當(dāng)時,,,(2)因為,由(1)知,平面的一個法向量為設(shè)平面的法向量為,因為,,所以令,則所以,由圖知,二面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能家居產(chǎn)品售后服務(wù)方案
- 醫(yī)療機構(gòu)員工調(diào)薪方案優(yōu)化建議
- 個人講師網(wǎng)絡(luò)課程錄制協(xié)議
- 城市公共設(shè)施零星維修施工方案
- 人教版一年級數(shù)學(xué)上學(xué)習(xí)準(zhǔn)備
- 老年患者腦血管造影術(shù)應(yīng)急處理預(yù)案
- 校園活動社會實踐報告
- 路測數(shù)據(jù)分析及應(yīng)用
- 我是校園小神農(nóng)綜合實踐活動方案
- 發(fā)布會領(lǐng)導(dǎo)講話稿
- SPSS期末統(tǒng)計分析報告
- 液化氣站反恐防暴演練方案
- 2014cad入門基礎(chǔ)課件
- 2023關(guān)愛殘疾人關(guān)愛殘疾日幫殘助殘知識講座
- 2016新編過盈量與裝配力計算公式
- 《建筑施工高處作業(yè)安全技術(shù)規(guī)范》(-)-全文
- 妊娠患者非產(chǎn)科手術(shù)麻醉專家講座
- 家具制造業(yè)生產(chǎn)管理制度大全
- 金融科技創(chuàng)新對金融服務(wù)的影響研究
- 停送電工作票制度
- YY/T 0612-2022一次性使用人體動脈血樣采集器(動脈血氣針)
評論
0/150
提交評論