2025屆安徽省定遠重點中學高二上數(shù)學期末統(tǒng)考模擬試題含解析_第1頁
2025屆安徽省定遠重點中學高二上數(shù)學期末統(tǒng)考模擬試題含解析_第2頁
2025屆安徽省定遠重點中學高二上數(shù)學期末統(tǒng)考模擬試題含解析_第3頁
2025屆安徽省定遠重點中學高二上數(shù)學期末統(tǒng)考模擬試題含解析_第4頁
2025屆安徽省定遠重點中學高二上數(shù)學期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆安徽省定遠重點中學高二上數(shù)學期末統(tǒng)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“,均有”的否定為()A.,均有 B.,使得C.,使得 D.,均有2.“中國剩余定理”又稱“孫子定理”.1852年英國來華傳教士偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲.1874年,英國數(shù)學家馬西森指出此法符合1801年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”.“中國剩余定理”講的是一個關(guān)于整除的問題,現(xiàn)有這樣一個整除問題:將2至2021這2020個數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列的項數(shù)為()A. B.C. D.3.已知橢圓的左、右焦點分別為、,點在橢圓上,若,則的面積為()A. B.C. D.4.如圖給出的是一道典型的數(shù)學無字證明問題:各矩形塊中填寫的數(shù)字構(gòu)成一個無窮數(shù)列,所有數(shù)字之和等于1.按照圖示規(guī)律,有同學提出了以下結(jié)論,其中正確的是()A.由大到小的第八個矩形塊中應(yīng)填寫的數(shù)字為B.前七個矩形塊中所填寫的數(shù)字之和等于C.矩形塊中所填數(shù)字構(gòu)成的是以1為首項,為公比的等比數(shù)列D.按照這個規(guī)律繼續(xù)下去,第n-1個矩形塊中所填數(shù)字是5.若,,則有()A. B.C. D.6.如圖,平行六面體中,為的中點,,,,則()A. B.C. D.7.某同學為了調(diào)查支付寶中的75名好友的螞蟻森林種樹情況,對75名好友進行編號,分別為1,2,…,75,采用系統(tǒng)抽樣的方法抽取一個容量為5的樣本,已知11號,26號,56號,71號好友在樣本中,則樣本中還有一名好友的編號是()A.40 B.41C.42 D.398.將一枚骰子先后拋擲兩次,若先后出現(xiàn)的點數(shù)分別記為a,b,則直線到原點的距離不超過1的概率是()A. B.C. D.9.已知三棱錐,點分別為的中點,且,用表示,則等于()A. B.C. D.10.已知動點滿足,則動點的軌跡是()A.橢圓 B.直線C.線段 D.圓11.在等比數(shù)列中,,,則等于()A.90 B.30C.70 D.4012.已知直線,兩個不同的平面,,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數(shù)列滿足,,公比,則的前2021項和______14.已知平面向量均為非零向量,且滿足,記向量在向量上投影向量為,則k=______.(用數(shù)字作答)15.已知命題:平面上一矩形ABCD的對角線AC與邊AB和AD所成角分別為,則,若把它推廣到空間長方體中,體對角線與平面,平面,平面所成的角分別為,則可以類比得到的結(jié)論為___________________.16.已知直線與平行,則實數(shù)的值為_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,右焦點F到上頂點的距離為.(1)求橢圓的方程;(2)是否存在過點F且與x軸不垂直的直線與橢圓交于A、B兩點,使得點C()在線段AB的中垂線上?若存在,求出直線l:若不存在,說明理曲.18.(12分)某校從高一年級學生中隨機抽取40名中學生,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:,,…,所得到如圖所示的頻率分布直圖(1)求圖中實數(shù)的值;(2)若該校高一年級共有640人,試估計該校高一年級期中考試數(shù)學成績不低于60分的人數(shù);(3)若從數(shù)學成績在[40,50)與[90,100]兩個分數(shù)段內(nèi)的學生中隨機選取兩名學生,求這2名學生的數(shù)學成績之差的絕對值不大于10的概率.19.(12分)中,角A,B,C所對的邊分別為.已知.(1)求的值;(2)求的面積.20.(12分)如圖,四棱錐中,側(cè)面是邊長為4的正三角形,且與底面垂直,底面是菱形,且,為的中點(1)求證:;(2)求點到平面的距離21.(12分)已知橢圓C:的離心率為,,是橢圓的左、右焦點,過且垂直于x軸的直線被橢圓C截得的線段長為1(1)求橢圓C的方程;(2)過點的直線l與橢圓C交于A,B兩點,求(O為坐標原點)的面積的最大值22.(10分)直線經(jīng)過點,且與圓相交與兩點,截得的弦長為,求的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】全稱命題的否定是特稱命題【詳解】根據(jù)全稱命題的否定是特稱命題,所以命題“,均有”的否定為“,使得”故選:C2、C【解析】由題設(shè)且,應(yīng)用不等式求的范圍,即可確定項數(shù).【詳解】由題設(shè),且,所以,可得且.所以此數(shù)列的項數(shù)為.故選:C3、B【解析】求出,可知為等腰三角形,取的中點,可得出,利用勾股定理求得,利用三角形的面積公式可求得結(jié)果.【詳解】在橢圓中,,,則,所以,,由橢圓的定義可得,取的中點,因為,則,由勾股定理可得,所以,.故選:B.4、B【解析】根據(jù)題意可得矩形塊中的數(shù)字從大到小形成等比數(shù)列,根據(jù)等比數(shù)列的通項公式可求.【詳解】設(shè)每個矩形塊中的數(shù)字從大到小形成數(shù)列,則可得是首項為,公比為的等比數(shù)列,,所以由大到小的第八個矩形塊中應(yīng)填寫的數(shù)字為,故A錯誤;前七個矩形塊中所填寫的數(shù)字之和等于,故B正確;矩形塊中所填數(shù)字構(gòu)成的是以為首項,為公比的等比數(shù)列,故C錯誤;按照這個規(guī)律繼續(xù)下去,第個矩形塊中所填數(shù)字是,故D錯誤.故選:B.5、D【解析】對待比較的代數(shù)式進行作差,利用不等式基本性質(zhì),即可判斷大小.【詳解】因為,又,,故,則,即;因為,又,,故,則;綜上所述:.故選:D.6、B【解析】先用向量與表示,然后用向量表示向量與,即可得解【詳解】解:為的中點,故選:【點睛】本題考查了平面向量基本定理的應(yīng)用,解決本題的關(guān)鍵是熟練運用向量的加法、減法及實數(shù)與向量的積的運算,屬于基礎(chǔ)題7、B【解析】根據(jù)系統(tǒng)抽樣等距性即可確定結(jié)果.【詳解】根據(jù)系統(tǒng)抽樣等距性得:11號,26號,56號,71號以及還有一名好友的編號應(yīng)該按大小排列后成等差數(shù)列,樣本中還有一名好友的編號為26號與56號的等差中項,即41號,故選:B【點睛】本題考查系統(tǒng)抽樣,考查基本分析求解能力,屬基礎(chǔ)題.8、C【解析】先由條件得出a,b滿足,得出滿足的基本事件數(shù),再求出總的基本事件數(shù),從而可得答案.【詳解】直線到原點的距離不超過1,則所以當時,可以為5,6當時,可以為4,5,6當時,可以為4,5,6當時,可以為2,3,4,5,6當時,可以為1,2,3,4,5,6當時,可以為1,2,3,4,5,6滿足的共有25種結(jié)果.將一枚骰子先后拋擲兩次,若先后出現(xiàn)的點數(shù)分別記為a,b,共有種結(jié)果所以滿足條件的概率為故選:C9、D【解析】連接,利用,化簡即可得到答案.【詳解】連接,如下圖.故選:D.10、C【解析】根據(jù)兩點之間的距離公式的幾何意義即可判定出動點軌跡.【詳解】由題意可知表示動點到點和點的距離之和等于,又因為點和點的距離等于,所以動點的軌跡為線段.故選:11、D【解析】根據(jù)等比數(shù)列的通項公式即可求出答案.【詳解】設(shè)該等比數(shù)列的公比為q,則,則.故選:D12、C【解析】對于A,可能在內(nèi),故可判斷A;對于B,可能相交,故可判斷B;對于C,根據(jù)線面垂直的判定定理,可判定C;對于D,和可能平行,或斜交或在內(nèi),故可判斷D.【詳解】對于A,除了外,還有可能在內(nèi),故可判斷A錯誤;對于B,,那么可能相交,故可判斷B錯誤;對于C,根據(jù)線面平行的性質(zhì)定理可知,在內(nèi)一定存在和平行的直線,那么該直線也垂直于,所以,故判定C正確;對于D,,,則和可能平行,或斜交或在內(nèi),故可判D.錯誤,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)等比數(shù)列的求和公式求解即可.【詳解】因為等比數(shù)列滿足,,公比,所以,故答案為:14、##1.5【解析】由兩邊平方可得,,,設(shè),向量是以向量為鄰邊的平行四邊形、有共同起點的對角線,,由余弦定理可得,向量在向量上投影向量為,化簡可得答案.【詳解】因為,所以,,兩邊平方整理得,,兩邊平方整理得,即,可得,,設(shè),所以向量是以向量為鄰邊的平行四邊形、有共同起點的對角線,如圖,即,因為,,平行四邊形即為的菱形,所以,由余弦定理可得,可得,,向量在向量上投影向量為,即.故答案為:.15、【解析】先由線面角的定義得到,再計算的值即可得到結(jié)論【詳解】在長方體中,連接,在長方體中,平面,所以對角線與平面所成的角為,對角線與平面所成的角為,對角線與平面所成的角為,顯然,,,所以,,故答案為:16、或【解析】根據(jù)平行線的性質(zhì)進行求解即可.【詳解】因為直線與平行,所以有:或,故答案為:或三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,【解析】(1)由題意可得,,求得的值即可求解;(2)由(1)得,假設(shè)存在滿足條件的直線:,代入橢圓方程消去可得、,由中點坐標公式可得中點的坐標,由求得的值即可求解.小問1詳解】由題意可得,,,解得,,所以橢圓的方程為【小問2詳解】由(1)得,假設(shè)存在滿足條件的直線:,代入橢圓方程整理可得,設(shè),,則,,可得,則線段的中點坐標為,所以,則,解得:,所以存在直線,且直線的方程為18、(1)a=0.03;(2)544人;(3).【解析】(1)根據(jù)圖中所有小矩形的面積之和等于1求解.

(2)根據(jù)頻率分布直方圖,得到成績不低于60分的頻率,再根據(jù)該校高一年級共有學生640人求解.

(3)由頻率分布直方圖得到成績在[40,50)和[90,100]分數(shù)段內(nèi)的人數(shù),先列舉出從數(shù)學成績在[40,50)與[90,100]兩個分數(shù)段內(nèi)的學生中隨機選取兩名學生的基本事件總數(shù),再得到兩名學生的數(shù)學成績之差的絕對值不大于10”的基本事件數(shù),代入古典概型概率求解.【詳解】(1)∵圖中所有小矩形的面積之和等于1,∴10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.

(2)根據(jù)頻率分布直方圖,成績不低于60分的頻率為1?10×(0.005+0.01)=0.85,

∵該校高一年級共有學生640人,

∴由樣本估計總體的思想,可估計該校高一年級數(shù)學成績不低于60分的人數(shù)約為640×0.85=544人.

(3)成績在[40,50)分數(shù)段內(nèi)的人數(shù)為40×0.05=2人,分別記為A,B,

成績在[90,100]分數(shù)段內(nèi)的人數(shù)為40×0.1=4人,分別記為C,D,E,F(xiàn).

若從數(shù)學成績在[40,50)與[90,100]兩個分數(shù)段內(nèi)的學生中隨機選取兩名學生,

則所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F(xiàn)),(B,C),(B,D),(B,E),(B,F(xiàn)),(C,D),(C,E),

(C,F(xiàn)),(D,E),(D,F(xiàn)),(E,F(xiàn))共15種.

如果兩名學生的數(shù)學成績都在[40,50)分數(shù)段內(nèi)或都在[90,100]分數(shù)段內(nèi),

那么這兩名學生的數(shù)學成績之差的絕對值一定不大于10.

如果一個成績在[40,50)分數(shù)段內(nèi),另一個成績在[90,100]分數(shù)段內(nèi),

那么這兩名學生數(shù)學成績之差的絕對值一定大于10.

記“這兩名學生的數(shù)學成績之差的絕對值不大于10”為事件M,

則事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F(xiàn)),(D,E),(D,F(xiàn)),(E,F(xiàn))共7種.

∴所求概率為P(M)=.【點睛】本題主要考查頻率分布直方圖的應(yīng)用以及古典概型概率的求法,還考查了運算求解的能力,屬于中檔題.19、(1);(2).【解析】(1)根據(jù)求出,根據(jù)求出,根據(jù)正弦定理求出;(2)先求出,再利用面積公式即可求出.【詳解】(1)在中,由題意知,又因為,所有,由正弦定理可得.(2)由得,由,得.所以.因此,的面積.【點睛】本題考查正弦定理和三角形面積公式的應(yīng)用,屬于中檔題.20、(1)證明見解析;(2).【解析】(1)取的中點,連接,,,先證明平面,再由平面得,(2)等體積法求解.根據(jù)題目條件,先證明為三棱錐的高,再求出以為頂點,為底面的三棱錐的體積和以為頂點,為底面的三棱錐的體積,根據(jù),求點到平面的距離.【詳解】(1)證明:如圖,取的中點,連接,,依題意可知,,均為正三角形,∴,又∵,∴平面又平面,∴(2)由(1)可知,∵平面平面,平面平面,平面,∴平面,即為三棱錐的高由題意得,∵為的中點,∴在中,,∴,,∴在中,邊上的高,∴的面積的面積點到平面的距離即點到

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論