2025屆北京市西城區(qū)北京師范大學(xué)附中高二上數(shù)學(xué)期末考試模擬試題含解析_第1頁
2025屆北京市西城區(qū)北京師范大學(xué)附中高二上數(shù)學(xué)期末考試模擬試題含解析_第2頁
2025屆北京市西城區(qū)北京師范大學(xué)附中高二上數(shù)學(xué)期末考試模擬試題含解析_第3頁
2025屆北京市西城區(qū)北京師范大學(xué)附中高二上數(shù)學(xué)期末考試模擬試題含解析_第4頁
2025屆北京市西城區(qū)北京師范大學(xué)附中高二上數(shù)學(xué)期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆北京市西城區(qū)北京師范大學(xué)附中高二上數(shù)學(xué)期末考試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.圓的圓心坐標(biāo)和半徑分別為()A.和 B.和C.和 D.和2.已知向量,且,則()A. B.C. D.3.已知等比數(shù)列中,,前三項(xiàng)之和,則公比的值為()A1 B.C.1或 D.或4.已知命題,,則()A., B.,C., D.,5.曲線在點(diǎn)處的切線過點(diǎn),則實(shí)數(shù)()A. B.0C.1 D.26.由小到大排列的一組數(shù)據(jù):,其中每個(gè)數(shù)據(jù)都小于,另一組數(shù)據(jù)2、的中位數(shù)可以表示為()A. B.C. D.7.已知隨機(jī)變量服從正態(tài)分布,且,則()A.0.1 B.0.2C.0.3 D.0.48.某市要對(duì)兩千多名出租車司機(jī)的年齡進(jìn)行調(diào)查,現(xiàn)從中隨機(jī)抽出100名司機(jī),已知抽到的司機(jī)年齡都在[20,45]歲之間,根據(jù)調(diào)查結(jié)果得出司機(jī)的年齡情況殘缺的頻率分布直方圖如圖所示,利用這個(gè)殘缺的頻率分布直方圖估計(jì)該市出租車司機(jī)年齡的中位數(shù)大約是()A.31.6歲 B.32.6歲C.33.6歲 D.36.6歲9.的展開式中的系數(shù)為,則()A. B.C. D.10.已知數(shù)列是等比數(shù)列,,是函數(shù)的兩個(gè)不同零點(diǎn),則()A.16 B.C.14 D.11.“圓”是中國文化的一個(gè)重要精神元素,在中式建筑中有著廣泛的運(yùn)用,最具代表性的便是園林中的門洞.如圖,某園林中的圓弧形挪動(dòng)高為2.5m,底面寬為1m,則該門洞的半徑為()A.1.2m B.1.3mC.1.4m D.1.5m12.圓:與圓:的位置關(guān)系是()A.內(nèi)切 B.外切C.相交 D.相離二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線C的方程為,,,雙曲線C上存在一點(diǎn)P,使得,則實(shí)數(shù)a的最大值為___________.14.若圓和圓的公共弦所在的直線方程為,則______15.動(dòng)直線,恒過的定點(diǎn)是________16.若雙曲線的漸近線方程為,則該雙曲線的離心率為___________;若,則雙曲線的右焦點(diǎn)到漸近線的距離為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:x2=4y的焦點(diǎn)為F,過F的直線與拋物線C交于A,B兩點(diǎn),點(diǎn)M在拋物線C的準(zhǔn)線上,MF⊥AB,S△AFM=λS△BFM(1)當(dāng)λ=3時(shí),求|AB|的值;(2)當(dāng)λ∈[]時(shí),求|+|的最大值18.(12分)已知橢圓C:,斜率為的直線l與橢圓C交于A、B兩點(diǎn)且(1)求橢圓C的離心率;(2)求直線l方程19.(12分)已知等差數(shù)列的前項(xiàng)和為,.(1)求數(shù)列的通項(xiàng)公式;(2)求的最大值及相應(yīng)的的值.20.(12分)如圖①,直角梯形中,,,點(diǎn),分別在,上,,,將四邊形沿折起,使得點(diǎn),分別到達(dá)點(diǎn),的位置,如圖②,平面平面,.(1)求證:平面平面;(2)求二面角的余弦值.21.(12分)已知直線經(jīng)過兩條直線和的交點(diǎn),且與直線垂直(1)求直線的一般式方程;(2)若圓的圓心為點(diǎn),直線被該圓所截得的弦長(zhǎng)為,求圓的標(biāo)準(zhǔn)方程22.(10分)總書記指出:“我們既要綠水青山,也要金山銀山.”新能源汽車環(huán)保、節(jié)能,以電代油,減少排放,既符合我國的國情,也代表了世界汽車產(chǎn)業(yè)發(fā)展的方向.工業(yè)部表示,到2025年中國的汽車總銷量將達(dá)到3500萬輛,并希望新能源汽車至少占總銷量的五分之一.江蘇某新能源公司年初購入一批新能源汽車充電樁,每臺(tái)16200元,第一年每臺(tái)設(shè)備的維修保養(yǎng)費(fèi)用為1100元,以后每年增加400元,每臺(tái)充電樁每年可給公司收益8100元(1)每臺(tái)充電樁第幾年開始獲利?(2)每臺(tái)充電樁在第幾年時(shí),年平均利潤(rùn)最大

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用圓的一般方程的圓心和半徑公式,即得解【詳解】可化為,由圓心為,半徑,易知圓心的坐標(biāo)為,半徑為.故選:C2、A【解析】利用空間向量共線的坐標(biāo)表示即可求解.【詳解】由題意可得,解得,所以.故選:A3、C【解析】根據(jù)條件列關(guān)于首項(xiàng)與公比的方程組,即可解得公比,注意等比數(shù)列求和公式使用條件.【詳解】等比數(shù)列中,,前三項(xiàng)之和,若,,,符合題意;若,則,解得,即公比的值為1或,故選:C【點(diǎn)睛】本題考查等比數(shù)列求和公式以及基本量計(jì)算,考查基本分析求解能力,屬基礎(chǔ)題.4、C【解析】利用全稱量詞命題的否定可得出結(jié)論.【詳解】命題為全稱量詞命題,該命題的否定為,.故選:C.5、A【解析】由導(dǎo)數(shù)的幾何意義得切線方程為,進(jìn)而得.【詳解】解:因?yàn)椋?,,所以,切線方程為,因?yàn)榍芯€過點(diǎn),所以,解得故選:A6、C【解析】先根據(jù)題意對(duì)數(shù)據(jù)進(jìn)行排列,然后由中位數(shù)的定義求解即可【詳解】因?yàn)橛尚〉酱笈帕械囊唤M數(shù)據(jù):,其中每個(gè)數(shù)據(jù)都小于,所以另一組數(shù)據(jù)2、從小到大的排列為,所以這一組數(shù)的中位數(shù)為,故選:C7、A【解析】利用正態(tài)分布的對(duì)稱性和概率的性質(zhì)即可【詳解】由,且則有:根據(jù)正態(tài)分布的對(duì)稱性可知:故選:A8、C【解析】先根據(jù)頻率分布直方圖中頻率之和為計(jì)算出數(shù)據(jù)位于的頻率,再利用頻率分布直方圖中求中位數(shù)的原則求出中位數(shù)【詳解】在頻率分布直方圖中,所有矩形面積之和為,所以,數(shù)據(jù)位于的頻率為,前兩個(gè)矩形的面積之和為,前三個(gè)矩形的面積之和為,所以,中位數(shù)位于區(qū)間,設(shè)中位數(shù)為,則有,解得(歲),故選C【點(diǎn)睛】本題考查頻率分布直方圖的性質(zhì)和頻率分布直方圖中中位數(shù)的計(jì)算,計(jì)算時(shí)要充分利用頻率分布直方圖中中位數(shù)的計(jì)算原理來計(jì)算,考查計(jì)算能力,屬于中等題9、B【解析】根據(jù)二項(xiàng)式展開式的通項(xiàng),先求得x的指數(shù)為1時(shí)r的值,再求得a的值.【詳解】由題意得:二項(xiàng)式展開式的通項(xiàng)為:,令,則,故選:B10、B【解析】由題意得到,根據(jù)等比數(shù)列的性質(zhì)得到,化簡(jiǎn),即可求解.【詳解】由,是函數(shù)的兩個(gè)不同零點(diǎn),可得,根據(jù)等比數(shù)列的性質(zhì),可得則.故選:B.11、B【解析】設(shè)半徑為R,根據(jù)垂徑定理可以列方程求解即可.【詳解】設(shè)半徑為R,,解得,化簡(jiǎn)得.故選:B.12、A【解析】先計(jì)算兩圓心之間的距離,判斷距離和半徑和、半徑差之間的關(guān)系即可.【詳解】圓圓心,半徑,圓圓心,半徑,兩圓心之間的距離,故兩圓內(nèi)切.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】設(shè)出,根據(jù)條件推出在圓上運(yùn)動(dòng),根據(jù)題意要使雙曲線和圓有交點(diǎn),則得答案.【詳解】設(shè)點(diǎn),由得:,所以,化簡(jiǎn)得:,即滿足條件的點(diǎn)在圓上運(yùn)動(dòng),又點(diǎn)存在于上,故雙曲線與圓有交點(diǎn),則,即實(shí)數(shù)a的最大值為2,故答案為:214、【解析】由兩圓公共弦方程,將兩圓方程相減得到,結(jié)合已知列方程組求、,即可得答案.【詳解】由題設(shè),兩圓方程相減可得:,即為公共弦,∴,可得,∴.故答案為:.15、【解析】將直線方程轉(zhuǎn)化為,從而可得,即可得到結(jié)果.【詳解】∵,∴∴,解得:x=2,y=2.即方程(a∈R)所表示的直線恒過定點(diǎn)(2,2)故答案為:16、①.②.3【解析】由漸近線方程知,結(jié)合雙曲線參數(shù)關(guān)系及離心率的定義求雙曲線的離心率,由已知可得右焦點(diǎn)為,應(yīng)用點(diǎn)線距離公式求距離.【詳解】由題設(shè),,則,當(dāng)時(shí),,則雙曲線為,故右焦點(diǎn)為,所以右焦點(diǎn)到漸近線的距離為.故答案為:,3.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由面積之比可得向量之比,設(shè)直線AB的方程,與拋物線的方程聯(lián)立求出兩根之和及兩根之積,與向量的關(guān)系可得的A,B的橫坐標(biāo)的關(guān)系聯(lián)立求出直線AB的斜率,再由拋物線的性質(zhì)可得焦點(diǎn)弦的值;(2)由(1)的解法類似的求出AB的中點(diǎn)N的坐標(biāo),可得直線AB的斜率與λ的關(guān)系,再由λ的范圍,求出直線AB的斜率的范圍,由題意設(shè)直線MF的方程,令y=﹣1求出M的橫坐標(biāo),進(jìn)而求出|MN|的最大值,而|+|=2||,求出|+|的最大值【小問1詳解】當(dāng)λ=3時(shí),即S△AFM=3S△BFM,由題意可得=3,因?yàn)閽佄锞€C:x2=4y的焦點(diǎn)為F(1,0),準(zhǔn)線方程為y=﹣1,設(shè)A(x1,y1),B(x2,y2),直線AB的方程為y=kx+1,聯(lián)立,整理可得:x2﹣4kx﹣4=0,顯然,x1+x2=4k①,x1x2=﹣4②,y1+y2=k(x1+x2)+2=4k2+2,由=3,則(﹣x1,1﹣y1)=3(x2,y2﹣1)可得x1=﹣3x2③,①③聯(lián)立可得x2=﹣2k,x1=6k,代入②中可得﹣12k2=﹣4,解得k2=,由拋物線的性質(zhì)可得|AB|=y(tǒng)1+y2+2=4×+2=,所以|AB|的值為;【小問2詳解】由(1)可得AB中點(diǎn)N(2k,2k2+2),由=λ,則x1=﹣λx2④,同(1)的算法:①②④聯(lián)立4k2λ=(1﹣λ)2,因?yàn)棣恕蔥],所以4k2=λ+﹣2,令y=λ+,λ∈[],則函數(shù)y先減后增,所以λ=2或時(shí),y最大且為2+,此時(shí)4k2最大,且為,所以k2的最大值為:,直線MF的方程為:y=﹣x+1,令y=﹣1,可得x=2k,即M(2k,﹣1),因?yàn)閨+|=2||,而|NM|=|2k2+2+1|=2k2+3≤2×+3=,所以|+|的最大值為18、(1)(2)或【解析】(1)將橢圓化為標(biāo)準(zhǔn)方程,求得,進(jìn)而求得離心率;(2)設(shè)直線,,,與橢圓聯(lián)立,借助韋達(dá)定理及弦長(zhǎng)公式求得,從而求得直線方程.【小問1詳解】由題知,橢圓C:,則,離心率【小問2詳解】設(shè)直線,,聯(lián)立,化簡(jiǎn)得,則,解得,,由弦長(zhǎng)公式知,,解得,故直線或19、(1)(2)當(dāng)或時(shí),有最大值是20【解析】(1)用等差數(shù)列的通項(xiàng)公式即可.(2)用等差數(shù)列的求和公式即可.【小問1詳解】在等差數(shù)列中,∵,∴,解得,∴;【小問2詳解】∵,∴,∴當(dāng)或時(shí),有最大值是2020、(1)證明見解析(2)【解析】(1)根據(jù),,,,易證,再根據(jù)平面平面,,得到平面,進(jìn)而得到,再利用線面垂直的判定定理證明平面即可;(2)根據(jù)(1)知,,兩兩垂直,以,,的方向分別為,,軸的正方向建立空間直角坐標(biāo)系,分別求得平面的一個(gè)法向量和平面的一個(gè)法向量,設(shè)二面角的大小為,由求解.【小問1詳解】解:因?yàn)?,,,所以,,又,所以是等腰直角三角形,即,所?由平面幾何知識(shí)易知,所以,即.又平面平面,平面平面,,所以平面,又平面,所以.又,所以平面,又平面,所以平面平面.【小問2詳解】由(1)知,,兩兩垂直,以,,的方向分別為,,軸的正方向,建立如圖所示的空間直角坐標(biāo)系,設(shè),則,,,,F(xiàn)(1,0,0),則,,設(shè)平面的一個(gè)法向量為,由,得,取,則.由,,,得平面,所以平面的一個(gè)法向量為,設(shè)二面角的大小為,則,由圖可知二面角為鈍二面角,所以二面角的余弦值為.21、(1)(2)【解析】(1)由題意求出兩直線的交點(diǎn),再求出所求直線的斜率,用點(diǎn)斜式寫出直線的方程;(2)根據(jù)題意求出圓的半徑,由圓心寫出圓的標(biāo)準(zhǔn)方程【小問1詳解】解:由題意知,解得,直線和的交點(diǎn)為;設(shè)直線的斜率為,與直線垂直,;直線的方程為,化為一般形式為;【小問2詳解】解:設(shè)圓的半徑為,則圓心為到直線的距離為,由垂徑定理得,解得,圓的標(biāo)準(zhǔn)方程為22、(1)公司從第3年開始獲利;(2)第9年時(shí)每臺(tái)充電樁年平均利潤(rùn)最大3600元【解析】(1)判斷已知條件是等差數(shù)列,然后求解利潤(rùn)的表達(dá)式,推出表達(dá)式求解n即可(2)利用基本不等式求解最大值即可【詳解】(1)每年的維修保養(yǎng)費(fèi)用是以1100為首項(xiàng),400為公差的等差數(shù)列,設(shè)第n年時(shí)累計(jì)利潤(rùn)為f(n),f(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論