版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆福建省福州市瑯岐中學高三數(shù)學第一學期期末質量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的圖象的大致形狀是()A. B. C. D.2.已知是圓心為坐標原點,半徑為1的圓上的任意一點,將射線繞點逆時針旋轉到交圓于點,則的最大值為()A.3 B.2 C. D.3.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件4.若x,y滿足約束條件則z=的取值范圍為()A.[] B.[,3] C.[,2] D.[,2]5.設直線的方程為,圓的方程為,若直線被圓所截得的弦長為,則實數(shù)的取值為A.或11 B.或11 C. D.6.已知函數(shù),則不等式的解集為()A. B. C. D.7.若,,,點C在AB上,且,設,則的值為()A. B. C. D.8.下列與函數(shù)定義域和單調性都相同的函數(shù)是()A. B. C. D.9.已知,若方程有唯一解,則實數(shù)的取值范圍是()A. B.C. D.10.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.3 C. D.411.已知函數(shù),則函數(shù)的圖象大致為()A. B.C. D.12.已知函數(shù)滿足,且,則不等式的解集為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù)x,y滿足(2x-y)2+4y14.已知點是拋物線的焦點,,是該拋物線上的兩點,若,則線段中點的縱坐標為__________.15.設是公差不為0的等差數(shù)列的前n項和,且,則______.16.已知滿足且目標函數(shù)的最大值為7,最小值為1,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某工廠生產某種電子產品,每件產品不合格的概率均為,現(xiàn)工廠為提高產品聲譽,要求在交付用戶前每件產品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產品,且每件產品檢驗合格與否相互獨立.若每件產品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產品每個一組進行分組檢驗,如果某一組產品檢驗合格,則說明該組內產品均合格,若檢驗不合格,則說明該組內有不合格產品,再對該組內每一件產品單獨進行檢驗,如此,每一組產品只需檢驗次或次.設該工廠生產件該產品,記每件產品的平均檢驗次數(shù)為.(1)求的分布列及其期望;(2)(i)試說明,當越小時,該方案越合理,即所需平均檢驗次數(shù)越少;(ii)當時,求使該方案最合理時的值及件該產品的平均檢驗次數(shù).18.(12分)改革開放40年,我國經(jīng)濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調查.隨機抽取男女駕駛員各50人,進行問卷測評,所得分數(shù)的頻率分布直方圖如圖所示.規(guī)定得分在80分以上為交通安全意識強.安全意識強安全意識不強合計男性女性合計(Ⅰ)求的值,并估計該城市駕駛員交通安全意識強的概率;(Ⅱ)已知交通安全意識強的樣本中男女比例為4:1,完成2×2列聯(lián)表,并判斷有多大把握認為交通安全意識與性別有關;(Ⅲ)在(Ⅱ)的條件下,從交通安全意識強的駕駛員中隨機抽取2人,求抽到的女性人數(shù)的分布列及期望.附:,其中0.0100.0050.0016.6357.87910.82819.(12分)在中,內角的對邊分別是,滿足條件.(1)求角;(2)若邊上的高為,求的長.20.(12分)已知橢圓過點且橢圓的左、右焦點與短軸的端點構成的四邊形的面積為.(1)求橢圓C的標準方程:(2)設A是橢圓的左頂點,過右焦點F的直線,與橢圓交于P,Q,直線AP,AQ與直線交于M,N,線段MN的中點為E.①求證:;②記,,的面積分別為、、,求證:為定值.21.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.22.(10分)某工廠的機器上有一種易損元件A,這種元件在使用過程中發(fā)生損壞時,需要送維修處維修.工廠規(guī)定當日損壞的元件A在次日早上8:30之前送到維修處,并要求維修人員當日必須完成所有損壞元件A的維修工作.每個工人獨立維修A元件需要時間相同.維修處記錄了某月從1日到20日每天維修元件A的個數(shù),具體數(shù)據(jù)如下表:日期1日2日3日4日5日6日7日8日9日10日元件A個數(shù)91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A個數(shù)12241515151215151524從這20天中隨機選取一天,隨機變量X表示在維修處該天元件A的維修個數(shù).(Ⅰ)求X的分布列與數(shù)學期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個維修工人每天維修元件A的個數(shù)的數(shù)學期望不超過4個,至少需要增加幾名維修工人?(只需寫出結論)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)函數(shù)奇偶性,可排除D;求得及,由導函數(shù)符號可判斷在上單調遞增,即可排除AC選項.【詳解】函數(shù)易知為奇函數(shù),故排除D.又,易知當時,;又當時,,故在上單調遞增,所以,綜上,時,,即單調遞增.又為奇函數(shù),所以在上單調遞增,故排除A,C.故選:B【點睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,導函數(shù)性質與函數(shù)圖象關系,屬于中檔題.2、C【解析】
設射線OA與x軸正向所成的角為,由三角函數(shù)的定義得,,,利用輔助角公式計算即可.【詳解】設射線OA與x軸正向所成的角為,由已知,,,所以,當時,取得等號.故選:C.【點睛】本題考查正弦型函數(shù)的最值問題,涉及到三角函數(shù)的定義、輔助角公式等知識,是一道容易題.3、D【解析】
通過列舉法可求解,如兩角分別為時【詳解】當時,,但,故充分條件推不出;當時,,但,故必要條件推不出;所以“”是“”的既不充分也不必要條件.故選:D.【點睛】本題考查命題的充分與必要條件判斷,三角函數(shù)在解三角形中的具體應用,屬于基礎題4、D【解析】
由題意作出可行域,轉化目標函數(shù)為連接點和可行域內的點的直線斜率的倒數(shù),數(shù)形結合即可得解.【詳解】由題意作出可行域,如圖,目標函數(shù)可表示連接點和可行域內的點的直線斜率的倒數(shù),由圖可知,直線的斜率最小,直線的斜率最大,由可得,由可得,所以,,所以.故選:D.【點睛】本題考查了非線性規(guī)劃的應用,屬于基礎題.5、A【解析】
圓的圓心坐標為(1,1),該圓心到直線的距離,結合弦長公式得,解得或,故選A.6、D【解析】
先判斷函數(shù)的奇偶性和單調性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域為.因為,所以為上的偶函數(shù),因為函數(shù)都是在上單調遞減.所以函數(shù)在上單調遞減.因為,所以,且,解得.故選:D【點睛】本題主要考查函數(shù)的奇偶性和單調性的判斷,考查函數(shù)的奇偶性和單調性的應用,意在考查學生對這些知識的理解掌握水平.7、B【解析】
利用向量的數(shù)量積運算即可算出.【詳解】解:,,又在上,故選:【點睛】本題主要考查了向量的基本運算的應用,向量的基本定理的應用及向量共線定理等知識的綜合應用.8、C【解析】
分析函數(shù)的定義域和單調性,然后對選項逐一分析函數(shù)的定義域、單調性,由此確定正確選項.【詳解】函數(shù)的定義域為,在上為減函數(shù).A選項,的定義域為,在上為增函數(shù),不符合.B選項,的定義域為,不符合.C選項,的定義域為,在上為減函數(shù),符合.D選項,的定義域為,不符合.故選:C【點睛】本小題主要考查函數(shù)的定義域和單調性,屬于基礎題.9、B【解析】
求出的表達式,畫出函數(shù)圖象,結合圖象以及二次方程實根的分布,求出的范圍即可.【詳解】解:令,則,則,故,如圖示:由,得,函數(shù)恒過,,由,,可得,,,若方程有唯一解,則或,即或;當即圖象相切時,根據(jù),,解得舍去),則的范圍是,故選:.【點睛】本題考查函數(shù)的零點問題,考查函數(shù)方程的轉化思想和數(shù)形結合思想,屬于中檔題.10、C【解析】
首先把三視圖轉換為幾何體,該幾何體為由一個三棱柱體,切去一個三棱錐體,由柱體、椎體的體積公式進一步求出幾何體的體積.【詳解】解:根據(jù)幾何體的三視圖轉換為幾何體為:該幾何體為由一個三棱柱體,切去一個三棱錐體,如圖所示:故:.故選:C.【點睛】本題考查了由三視圖求幾何體的體積、需熟記柱體、椎體的體積公式,考查了空間想象能力,屬于基礎題.11、A【解析】
用排除法,通過函數(shù)圖像的性質逐個選項進行判斷,找出不符合函數(shù)解析式的圖像,最后剩下即為此函數(shù)的圖像.【詳解】設,由于,排除B選項;由于,所以,排除C選項;由于當時,,排除D選項.故A選項正確.故選:A【點睛】本題考查了函數(shù)圖像的性質,屬于中檔題.12、B【解析】
構造函數(shù),利用導數(shù)研究函數(shù)的單調性,即可得到結論.【詳解】設,則函數(shù)的導數(shù),,,即函數(shù)為減函數(shù),,,則不等式等價為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.【點睛】本題主要考查利用導數(shù)研究函數(shù)單調性,根據(jù)函數(shù)的單調性解不等式,考查學生分析問題解決問題的能力,是難題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
直接利用柯西不等式得到答案.【詳解】根據(jù)柯西不等式:2x-y2+4y當2x-y=2y,即x=328故答案為:2.【點睛】本題考查了柯西不等式求最值,也可以利用均值不等式,三角換元求得答案.14、2【解析】
運用拋物線的定義將拋物線上的點到焦點距離等于到準線距離,然后求解結果.【詳解】拋物線的標準方程為:,則拋物線的準線方程為,設,,則,所以,則線段中點的縱坐標為.故答案為:【點睛】本題考查了拋物線的定義,由拋物線定義將點到焦點距離轉化為點到準線距離,需要熟練掌握定義,并能靈活運用,本題較為基礎.15、18【解析】
將已知已知轉化為的形式,化簡后求得,利用等差數(shù)列前公式化簡,由此求得表達式的值.【詳解】因為,所以.故填:.【點睛】本題考查等差數(shù)列基本量的計算,考查等差數(shù)列的性質以及求和,考查運算求解能力,屬于基礎題.16、-2【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大最小值時所在的頂點即可.【詳解】由題意得:目標函數(shù)在點B取得最大值為7,在點A處取得最小值為1,∴,,∴直線AB的方程是:,∴則,故答案為.【點睛】本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值的方法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析,(2)(i)見解析(ii)時平均檢驗次數(shù)最少,約為594次.【解析】
(1)由題意可得,的可能取值為和,分別求出其概率即可求出分布列,進而可求出期望.(2)(i)由記,根據(jù)函數(shù)的單調性即可證出;記,當且取最小值時,該方案最合理,對進行賦值即可求解.【詳解】(1)由題,的可能取值為和,故的分布列為由記,因為,所以在上單調遞增,故越小,越小,即所需平均檢驗次數(shù)越少,該方案越合理記當且取最小值時,該方案最合理,因為,,所以時平均檢驗次數(shù)最少,約為次.【點睛】本題考查了離散型隨機變量的分布列、數(shù)學期望,考查了分析問題、解決問題的能力,屬于中檔題.18、(Ⅰ).0.2(Ⅱ)見解析,有的把握認為交通安全意識與性別有關(Ⅲ)見解析,【解析】
(Ⅰ)直接根據(jù)頻率和為1計算得到答案.(Ⅱ)完善列聯(lián)表,計算,對比臨界值表得到答案.(Ⅲ)的取值為,計算概率得到分布列,計算數(shù)學期望得到答案.【詳解】(Ⅰ),解得.所以該城市駕駛員交通安全意識強的概率.(Ⅱ)安全意識強安全意識不強合計男性163450女性44650合計2080100,所以有的把握認為交通安全意識與性別有關(Ⅲ)的取值為所以的分布列為期望.【點睛】本題考查了獨立性檢驗,分布列,數(shù)學期望,意在考查學生的計算能力和綜合應用能力.19、(1).(2)【解析】
(1)利用正弦定理的邊角互化可得,再根據(jù),利用兩角和的正弦公式即可求解.(2)已知,由知,在中,解出即可.【詳解】(1)由正弦定理知由己知,而∴,(2)已知,則由知先求∴∴∴【點睛】本題主要考查了正弦定理解三角形、三角形的性質、兩角和的正弦公式,需熟記定理與公式,屬于基礎題.20、(1);(2)①證明見解析;②證明見解析【解析】
(1)解方程即可;(2)①設直線,,,將點的坐標用表示,證明即可;②分別用表示,,的面積即可.【詳解】(1)解之得:的標準方程為:(2)①,,設直線代入橢圓方程:設,,,直線,直線,,,,,.②,所以.【點睛】本題考查了直接法求橢圓的標準方程、直線與橢圓位置關系中的定值問題,在處
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 勞務費支付合同書范本2
- 建筑能源管理行業(yè)經(jīng)營分析報告
- 牙科用印模托盤市場分析及投資價值研究報告
- 帽架產業(yè)鏈招商引資的調研報告
- 出租家具行業(yè)相關項目經(jīng)營管理報告
- 位置定位服務電信服務行業(yè)市場調研分析報告
- 貴州省烏當區(qū)某校2024-2025學年高三上學期10月月考英語試題(解析版)
- 蠶種脫水機項目運營指導方案
- 光遺傳學領域的研究行業(yè)營銷策略方案
- 氣動噴燈產品供應鏈分析
- 《Vue 3基礎入門》課件 第一章 vue 3簡介
- 【7道人教版期中】安徽省合肥市琥珀中學+2023-2024學年七年級上學期11月期中道德與法治試題(含解析)
- 中國移動自智網(wǎng)絡白皮書(2024) 強化自智網(wǎng)絡價值引領加速邁進L4級新階段
- GB/T 31486-2024電動汽車用動力蓄電池電性能要求及試驗方法
- 2024年衛(wèi)生系統(tǒng)招聘考試-衛(wèi)生系統(tǒng)招聘考試(臨床醫(yī)學專業(yè)知識)考試近5年真題集錦(頻考類試題)帶答案
- 插畫風浙江大學浙大介紹大學介紹
- 供應鏈金融物流行業(yè)發(fā)展趨勢及前景展望分析報告
- 應收賬款保理融資協(xié)議
- 期中試卷(1-3單元)(試題)-2024-2025學年六年級上冊數(shù)學人教版
- 2025屆新高考政治復習備考策略及教學建議 課件
- TYNAEPI 0001-2024 有機固廢低溫絕氧碳化處理工程技術規(guī)
評論
0/150
提交評論