版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廣西玉林市福綿區(qū)2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)雙曲線()的焦距為12,則()A.1 B.2C.3 D.42.命題P:ax2+2x﹣1=0有實(shí)數(shù)根,若¬p是假命題,則實(shí)數(shù)a的取值范圍是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}3.若直線與直線垂直,則()A6 B.4C. D.4.已知x>0、y>0,且1,若恒成立,則實(shí)數(shù)m的取值范圍為()A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)5.某工廠去年的電力消耗為千瓦,由于設(shè)各更新,該工廠計(jì)劃每年比上一年的電力消耗減少,則從今年起,該工廠第5年消耗的電力為()A.m千瓦 B.m千瓦C.m千瓦 D.m千瓦6.已知雙曲線左右焦點(diǎn)為,過的直線與雙曲線的右支交于,兩點(diǎn),且,若線段的中垂線過點(diǎn),則雙曲線的離心率為()A.3 B.2C. D.7.在平面直角坐標(biāo)系中,已知橢圓的上、下頂點(diǎn)分別為、,左頂點(diǎn)為,左焦點(diǎn)為,若直線與直線互相垂直,則橢圓的離心率為A. B.C. D.8.已知橢圓(a>b>0)的離心率為,則=()A. B.C. D.9.觀察數(shù)列,(),,()的特點(diǎn),則括號中應(yīng)填入的適當(dāng)?shù)臄?shù)為()A. B.C. D.10.已知函數(shù)在處的導(dǎo)數(shù)為,則()A. B.C. D.11.如圖,有一個(gè)水平放置的透明無蓋的正方體容器,容器高8cm,將一個(gè)球放在容器口,再向容器內(nèi)注水,當(dāng)球面恰好接觸水面時(shí)測得水深為6cm,如果不計(jì)容器的厚度,則球的體積為A. B.C. D.12.集合,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,且,則的值是_________.14.已知向量,,,若,則____________.15.已知是橢圓的兩個(gè)焦點(diǎn),點(diǎn)M在C上,則的最大值為_______16.在長方體中,設(shè),,則異面直線與所成角的大小為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知公差不為0的等差數(shù)列的前項(xiàng)和為,且,,成等比數(shù)列,且.(1)求的通項(xiàng)公式;(2)若,求數(shù)列的前n項(xiàng)和.18.(12分)如圖,五邊形為東京奧運(yùn)會公路自行車比賽賽道平面設(shè)計(jì)圖,根據(jù)比賽需要,在賽道設(shè)計(jì)時(shí)需預(yù)留出,兩條服務(wù)通道(不考慮寬度),,,,,為賽道.現(xiàn)已知,,千米,千米(1)求服務(wù)通道的長(2)在上述條件下,如何設(shè)計(jì)才能使折線賽道(即)的長度最大,并求最大值19.(12分)如圖,已知菱形ABCD的邊長為3,對角線,將△沿著對角線BD翻折至△的位置,使得,在平面ABCD上方存在一點(diǎn)M,且平面ABCD,(1)求證:平面平面ABD;(2)求點(diǎn)M到平面ABE的距離;(3)求二面角的正弦值20.(12分)已知橢圓的焦距為4,其短軸的兩個(gè)端點(diǎn)與長軸的一個(gè)端點(diǎn)構(gòu)成正三角形.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)斜率為k的直線與橢圓C交于兩點(diǎn),O為坐標(biāo)原點(diǎn),若的面積為定值,判斷是否為定值,如果是,求出該定值;如果不是,說明理由.21.(12分)求下列函數(shù)導(dǎo)數(shù):(1);(2);22.(10分)如圖,三棱錐中,兩兩垂直,,且分別為線段的中點(diǎn).(1)若點(diǎn)是線段的中點(diǎn),求證:直線平面;(2)求證:平面平面.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)可得關(guān)于的方程,解方程即可得答案.【詳解】因?yàn)榭苫癁椋裕瑒t.故選:B.【點(diǎn)睛】本題考查已知雙曲線的焦距求參數(shù)的值,考查函數(shù)與方程思想,考查運(yùn)算求解能力,屬于基礎(chǔ)題.2、C【解析】根據(jù)是假命題,判斷出是真命題.對分成,和兩種情況,結(jié)合方程有實(shí)數(shù)根,求得的取值范圍.詳解】┐p是假命題,則p是真命題,∴ax2+2x﹣1=0有實(shí)數(shù)根,當(dāng)a=0時(shí),方程為2x﹣1=0,解得x=0.5,有根,符合題意;當(dāng)a≠0時(shí),方程有根,等價(jià)于△=4+4a≥0,∴a≥﹣1且,綜上所述,a的可能取值為a≥﹣1故選:C【點(diǎn)睛】本小題主要考查根據(jù)命題否定的真假性求參數(shù),屬于基礎(chǔ)題.3、A【解析】由兩條直線垂直的條件可得答案.【詳解】由題意可知,即故選:A.4、B【解析】應(yīng)用基本不等式“1”的代換求的最小值,注意等號成立條件,再根據(jù)題設(shè)不等式恒成立有,解一元二次不等式求解集即可.【詳解】由題設(shè),,當(dāng)且僅當(dāng)時(shí)等號成立,∴要使恒成立,只需,故,∴.故選:B.5、D【解析】根據(jù)等比數(shù)列的定義進(jìn)行求解即可.【詳解】因?yàn)槿ツ甑碾娏ο臑榍?,工廠計(jì)劃每年比上一年的電力消耗減少,所以今年的電力消耗為,因此從今年起,該工廠第5年消耗的電力為,故選:D6、C【解析】由雙曲線的定義得出中各線段長(用表示),然后通過余弦定理得出的關(guān)系式,變形后可得離心率【詳解】由題意又則有:可得:,,中,中.可得:解得:則有:故選:C7、C【解析】依題意,直線與直線互相垂直,,,故選8、D【解析】由離心率得,再由轉(zhuǎn)化為【詳解】因?yàn)椋?a2=9b2,所以故選:D.9、D【解析】利用觀察法可得,即得.【詳解】由題可得數(shù)列的通項(xiàng)公式為,∴.故選:D10、C【解析】利用導(dǎo)數(shù)的定義即可求出【詳解】故選:C11、A【解析】根據(jù)題意可求出正方體的上底面與球相交所得截面圓的半徑為4cm,再根據(jù)截面圓半徑,球的半徑以及球心距的關(guān)系,即可求出球的半徑,從而得到球的體積【詳解】設(shè)球的半徑為cm,根據(jù)已知條件知,正方體的上底面與球相交所得截面圓的半徑為4cm,球心到截面圓的距離為cm,所以由,得,所以球的體積為故選:A【點(diǎn)睛】本題主要考查球的體積公式的應(yīng)用,以及球的結(jié)構(gòu)特征的應(yīng)用,屬于基礎(chǔ)題12、A【解析】先解不等式求得集合再求交集.【詳解】解不等式得:,則有,解不等式,解得或,則有或,所以為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)空間向量可得,結(jié)合計(jì)算即可.【詳解】由題意知,,所以,解得.故答案:314、【解析】首先求出的坐標(biāo),再根據(jù)向量垂直得到,即可得到方程,解得即可;【詳解】解:因?yàn)橄蛄浚?,,所以向量,因?yàn)?,所以,即,解得故答案為?5、16【解析】根據(jù)橢圓定義可得:,再用基本不等式求解.【詳解】由橢圓的定義可得:,由基本不等式得:,當(dāng)且僅當(dāng)時(shí),等號成立,故的最大值為16故答案為:1616、##【解析】建立空間直角坐標(biāo)系,用向量法即可求出異面直線與所成的角.【詳解】以為原點(diǎn),所在直線分別為軸,軸,軸,建立空間直角坐標(biāo)系,則,所以,因?yàn)?,所以,即,所以異面直線與所成的角為.故答案為:90°.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)等差數(shù)列的通項(xiàng)公式和等比中項(xiàng),可得,再根據(jù)等差數(shù)列的前項(xiàng)和公式,即可求出,,進(jìn)而求出結(jié)果;(2)由(1)得,結(jié)合等比數(shù)列前項(xiàng)和公式和對數(shù)運(yùn)算性質(zhì),利用分組求和,即可求出結(jié)果.【小問1詳解】解:設(shè)的公差為,由,,成等比數(shù)列可知,即,化簡得.由可得,所以.將代入,得,,所以.小問2詳解】解:由(1)得,所以.18、(1)服務(wù)通道的長為千米(2)時(shí),折線賽道的長度最大,最大值為千米【解析】(1)先在中利用正弦定理得到長度,再在中,利用余弦定理得到即可;(2)在中利用余弦定理得到,再根據(jù)基本等式求解最值即可.【小問1詳解】在中,由正弦定理得:,在中,由余弦定理,得,即解得或(負(fù)值舍去)所以服務(wù)通道的長為千米【小問2詳解】在中,由余弦定理得:,即,所以因?yàn)?,所以,所以,即(?dāng)且僅當(dāng)時(shí)取等號)即當(dāng)時(shí),折線賽道的長度最大,最大值為千米19、(1)證明見解析;(2)1;(3).【解析】(1)過E作EO垂直于BD于O,連接AO,由勾股定義易得,由菱形的性質(zhì)有,再根據(jù)線面垂直、面面垂直的判定即可證結(jié)論.(2)構(gòu)建空間直角坐標(biāo)系,確定相關(guān)點(diǎn)的坐標(biāo),進(jìn)而求的坐標(biāo)及面ABE的法向量,應(yīng)用空間向量的坐標(biāo)運(yùn)算求點(diǎn)面距.(3)由(2)求得面MBA的法向量,結(jié)合(2)中面ABE的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求二面角的余弦值,進(jìn)而求其正弦值.【小問1詳解】過E作EO垂直于BD于O,連接AO,因?yàn)?,,故,同理,又,所以,即因?yàn)锳BCD為菱形,所以,又,所以面ABD,又面EBD,所以面面ABD【小問2詳解】以O(shè)為坐標(biāo)原點(diǎn),以,,分別為x軸,y軸,z軸的正方向,如圖建立空間直角坐標(biāo)系,則,,,,,所以,,面ABE的法向量為,所以,令,則又,則點(diǎn)M到面ABE的距離為【小問3詳解】由(2)得:面ABE的一個(gè)法向量為,且,若面MBA的法向量為,則,令,則所以,故二面角正弦值為20、(1)(2)是定值,定值為6【解析】(1)根據(jù)題意條件,可直接求出的值,然后再利用條件中、的關(guān)系,借助即可求解出、的值,從而得到橢圓方程;(2)根據(jù)已知條件設(shè)出、所在直線方程,然后與橢圓聯(lián)立方程,分別表示出根與系數(shù)的關(guān)系,再表示出弦長關(guān)系,再計(jì)算點(diǎn)到直線的距離,把面積用和的式子表示出來,通過給出的面積的值,找到和的等量關(guān)系,將等量關(guān)系帶入到利用跟與系數(shù)關(guān)系組合成的中即可得到答案.【小問1詳解】由題意:,由知:,故橢圓C的標(biāo)準(zhǔn)方程為,【小問2詳解】設(shè):,①橢圓.②聯(lián)立①②得:,,即∴,O到直線l的距離,∴,∴,即,∴.故為定值6.21、(1);(2)【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)公式以及導(dǎo)數(shù)的運(yùn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外墻涂料工程招標(biāo)說明
- 財(cái)務(wù)審計(jì)勞務(wù)合同
- 個(gè)人短期借款合同示例
- 中原地產(chǎn)房屋買賣合同風(fēng)險(xiǎn)提示
- 顯示屏采購合約格式
- 酒店制服購銷合約
- 廣華客運(yùn)站招標(biāo)要求及流程詳解
- 招標(biāo)文件制作招標(biāo)
- 網(wǎng)絡(luò)服務(wù)合同協(xié)議范本
- 中小企業(yè)借款合同英文
- 靜脈炎的預(yù)防與處理(讀書報(bào)告)
- 養(yǎng)老問題論文開題報(bào)告
- 藥物色譜分析智慧樹知到答案2024年中國藥科大學(xué)
- 廣西桂林市(2024年-2025年小學(xué)三年級語文)部編版期末考試(上學(xué)期)試卷(含答案)
- 公園建設(shè)投標(biāo)方案(技術(shù)標(biāo))
- 2024年海南??谑惺≈锌紨?shù)學(xué)試題
- 國開(FJ)形考復(fù)習(xí)資料電大2024《資產(chǎn)評估》形成性考核二
- 【甲子光年】2024自動駕駛行業(yè)報(bào)告-“端到端”漸行漸近
- 2024至2030年中國防彈衣行業(yè)市場全景分析及投資策略研究報(bào)告
- 2024秋國家開放大學(xué)“開放本科”行管專業(yè)《管理英語3》期末考試真題3試
- 2023-2024學(xué)年全國小學(xué)二年級上語文人教版期末試卷(含答案解析)
評論
0/150
提交評論