山東省青島膠州市、黃島區(qū)、平度區(qū)、李滄區(qū)2024年中考四模數(shù)學試題含解析_第1頁
山東省青島膠州市、黃島區(qū)、平度區(qū)、李滄區(qū)2024年中考四模數(shù)學試題含解析_第2頁
山東省青島膠州市、黃島區(qū)、平度區(qū)、李滄區(qū)2024年中考四模數(shù)學試題含解析_第3頁
山東省青島膠州市、黃島區(qū)、平度區(qū)、李滄區(qū)2024年中考四模數(shù)學試題含解析_第4頁
山東省青島膠州市、黃島區(qū)、平度區(qū)、李滄區(qū)2024年中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山東省青島膠州市、黃島區(qū)、平度區(qū)、李滄區(qū)2024年中考四模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.小紅上學要經(jīng)過三個十字路口,每個路口遇到紅、綠燈的機會都相同,小紅希望小學時經(jīng)過每個路口都是綠燈,但實際這樣的機會是()A. B. C. D.2.如圖是由若干個大小相同的小正方體堆砌而成的幾何體,那么其三種視圖中面積最小的是()A.主視圖 B.俯視圖 C.左視圖 D.一樣大3.從1、2、3、4、5、6這六個數(shù)中隨機取出一個數(shù),取出的數(shù)是3的倍數(shù)的概率是()A. B. C. D.4.下列命題正確的是()A.對角線相等的四邊形是平行四邊形B.對角線相等的四邊形是矩形C.對角線互相垂直的平行四邊形是菱形D.對角線互相垂直且相等的四邊形是正方形5.如圖,AB∥CD,那么()A.∠BAD與∠B互補 B.∠1=∠2 C.∠BAD與∠D互補 D.∠BCD與∠D互補6.如圖,⊙O的半徑為1,△ABC是⊙O的內(nèi)接三角形,連接OB、OC,若∠BAC與∠BOC互補,則弦BC的長為()A. B.2 C.3 D.1.57.股市有風險,投資需謹慎.截至今年五月底,我國股市開戶總數(shù)約95000000,正向1億挺進,95000000用科學計數(shù)法表示為()A.9.5×106 B.9.5×107 C.9.5×108 D.9.5×1098.如圖,已知△ABC中,∠A=75°,則∠1+∠2=()A.335°° B.255° C.155° D.150°9.已知,,且,則的值為()A.2或12 B.2或 C.或12 D.或10.下列四個命題,正確的有()個.①有理數(shù)與無理數(shù)之和是有理數(shù)②有理數(shù)與無理數(shù)之和是無理數(shù)③無理數(shù)與無理數(shù)之和是無理數(shù)④無理數(shù)與無理數(shù)之積是無理數(shù).A.1 B.2 C.3 D.4二、填空題(共7小題,每小題3分,滿分21分)11.中國的《九章算術》是世界現(xiàn)代數(shù)學的兩大源泉之一,其中有一問題:“今有牛五,羊二,值金十兩.牛二,羊五,值金八兩。問牛羊各值金幾何?”譯文:今有牛5頭,羊2頭,共值金10兩,牛2頭,羊5頭,共值金8兩.問牛、羊每頭各值金多少?設牛、羊每頭各值金兩、兩,依題意,可列出方程為___________________.12.如圖,在平面直角坐標系xOy中,四邊形ODEF和四邊形ABCD都是正方形,點F在x軸的正半軸上,點C在邊DE上,反比例函數(shù)(k≠0,x>0)的圖象過點B,E.若AB=2,則k的值為________.13.因式分解:a3-a=______.14.有下列各式:①;②;③;④.其中,計算結果為分式的是_____.(填序號)15.七巧板是我國祖先創(chuàng)造的一種智力玩具,它來源于勾股法,如圖①整幅七巧板是由正方形ABCD分割成七小塊(其中:五塊等腰直角三角形、一塊正方形和一塊平行四邊形)組成,如圖②是由七巧板拼成的一個梯形,若正方形ABCD的邊長為12cm,則梯形MNGH的周長是cm(結果保留根號).16.某種商品每件進價為10元,調(diào)查表明:在某段時間內(nèi)若以每件x元(10≤x≤20且x為整數(shù))出售,可賣出(20﹣x)件,若使利潤最大,則每件商品的售價應為_____元.17.分解因式:x2y﹣y=_____.三、解答題(共7小題,滿分69分)18.(10分)已知:如圖1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,點P由點B出發(fā)沿BA方向向點A勻速運動,速度為2cm/s;同時點Q由點A出發(fā)沿AC方向點C勻速運動,速度為lcm/s;連接PQ,設運動的時間為t秒(0<t<5),解答下列問題:(1)當為t何值時,PQ∥BC;(2)設△AQP的面積為y(cm2),求y關于t的函數(shù)關系式,并求出y的最大值;(3)如圖2,連接PC,并把△PQC沿QC翻折,得到四邊形PQPC,是否存在某時刻t,使四邊形PQP'C為菱形?若存在,求出此時t的值;若不存在,請說明理由.19.(5分)如圖,已知拋物線經(jīng)過點A(﹣1,0),B(4,0),C(0,2)三點,點D與點C關于x軸對稱,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P做x軸的垂線l交拋物線于點Q,交直線BD于點M.(1)求該拋物線所表示的二次函數(shù)的表達式;(2)已知點F(0,),當點P在x軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?(3)點P在線段AB運動過程中,是否存在點Q,使得以點B、Q、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標;若不存在,請說明理由.20.(8分)小明準備用一塊矩形材料剪出如圖所示的四邊形ABCD(陰影部分),做成要制作的飛機的一個機翼,請你根據(jù)圖中的數(shù)據(jù)幫小明計算出CD的長度.(結果保留根號).21.(10分)已知拋物線y=﹣2x2+4x+c.(1)若拋物線與x軸有兩個交點,求c的取值范圍;(2)若拋物線經(jīng)過點(﹣1,0),求方程﹣2x2+4x+c=0的根.22.(10分)如圖,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,請僅用無刻度直尺作圖:在圖1中作出圓心O;在圖2中過點B作BF∥AC.23.(12分)如圖,在矩形紙片ABCD中,AB=6,BC=1.把△BCD沿對角線BD折疊,使點C落在C′處,BC′交AD于點G;E、F分別是C′D和BD上的點,線段EF交AD于點H,把△FDE沿EF折疊,使點D落在D′處,點D′恰好與點A重合.(1)求證:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的長.24.(14分)解方程組:

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】分析:列舉出所有情況,看各路口都是綠燈的情況占總情況的多少即可.詳解:畫樹狀圖,得∴共有8種情況,經(jīng)過每個路口都是綠燈的有一種,∴實際這樣的機會是.故選B.點睛:此題考查了樹狀圖法求概率,樹狀圖法適用于三步或三步以上完成的事件,解題時要注意列出所有的情形.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.2、C【解析】如圖,該幾何體主視圖是由5個小正方形組成,左視圖是由3個小正方形組成,俯視圖是由5個小正方形組成,故三種視圖面積最小的是左視圖,故選C.3、B【解析】考點:概率公式.專題:計算題.分析:根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.解答:解:從1、2、3、4、5、6這六個數(shù)中隨機取出一個數(shù),共有6種情況,取出的數(shù)是3的倍數(shù)的可能有3和6兩種,故概率為2/6="1/"3.故選B.點評:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)="m"/n.4、C【解析】分析:根據(jù)平行四邊形、矩形、菱形、正方形的判定定理判斷即可.詳解:對角線互相平分的四邊形是平行四邊形,A錯誤;對角線相等的平行四邊形是矩形,B錯誤;對角線互相垂直的平行四邊形是菱形,C正確;對角線互相垂直且相等的平行四邊形是正方形;故選:C.點睛:本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質(zhì)定理.5、C【解析】

分清截線和被截線,根據(jù)平行線的性質(zhì)進行解答即可.【詳解】解:∵AB∥CD,∴∠BAD與∠D互補,即C選項符合題意;當AD∥BC時,∠BAD與∠B互補,∠1=∠2,∠BCD與∠D互補,故選項A、B、D都不合題意,故選:C.【點睛】本題考查了平行線的性質(zhì),熟記性質(zhì)并準確識圖是解題的關鍵.6、A【解析】分析:作OH⊥BC于H,首先證明∠BOC=120,在Rt△BOH中,BH=OB?sin60°=1×,即可推出BC=2BH=,詳解:作OH⊥BC于H.∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,∴∠BOC=120°,∵OH⊥BC,OB=OC,∴BH=HC,∠BOH=∠HOC=60°,在Rt△BOH中,BH=OB?sin60°=1×=,∴BC=2BH=.故選A.點睛:本題考查三角形的外接圓與外心、銳角三角函數(shù)、垂徑定理等知識,解題的關鍵是學會添加常用輔助線.7、B【解析】試題分析:15000000=1.5×2.故選B.考點:科學記數(shù)法—表示較大的數(shù)8、B【解析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故選B.點睛:本題考查了三角形、四邊形內(nèi)角和定理,掌握n邊形內(nèi)角和為(n﹣2)×180°(n≥3且n為整數(shù))是解題的關鍵.9、D【解析】

根據(jù)=5,=7,得,因為,則,則=5-7=-2或-5-7=-12.故選D.10、A【解析】解:①有理數(shù)與無理數(shù)的和一定是有理數(shù),故本小題錯誤;②有理數(shù)與無理數(shù)的和一定是無理數(shù),故本小題正確;③例如=0,0是有理數(shù),故本小題錯誤;④例如(﹣)×=﹣2,﹣2是有理數(shù),故本小題錯誤.故選A.點睛:本題考查的是實數(shù)的運算及無理數(shù)、有理數(shù)的定義,熟知以上知識是解答此題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】【分析】牛、羊每頭各值金兩、兩,根據(jù)等量關系:“牛5頭,羊2頭,共值金10兩”,“牛2頭,羊5頭,共值金8兩”列方程組即可.【詳解】牛、羊每頭各值金兩、兩,由題意得:,故答案為:.【點睛】本題考查了二元一次方程組的應用,弄清題意,找出等量關系列出方程組是關鍵.12、【解析】

解:設E(x,x),∴B(2,x+2),∵反比例函數(shù)(k≠0,x>0)的圖象過點B.E.∴x2=2(x+2),,(舍去),,故答案為13、a(a-1)(a+1)【解析】分析:先提取公因式a,再對余下的多項式利用平方差公式繼續(xù)分解.解答:解:a3-a,=a(a2-1),=a(a+1)(a-1).14、②④【解析】

根據(jù)分式的定義,將每個式子計算后,即可求解.【詳解】=1不是分式,=,=3不是分式,=故選②④.【點睛】本題考查分式的判斷,解題的關鍵是清楚分式的定義.15、24+24【解析】

仔細觀察梯形從而發(fā)現(xiàn)其各邊與原正方形各邊之間的關系,則不難求得梯形的周長.【詳解】解:觀察圖形得MH=GN=AD=12,HG=AC,AD=DC=12,AC=12,HG=6.梯形MNGH的周長=HG+HM+MN+NG=2HM+4HG=24+24.故答案為24+24.【點睛】此題主要考查學生對等腰梯形的性質(zhì)及正方形的性質(zhì)的運用及觀察分析圖形的能力.16、1【解析】

本題是營銷問題,基本等量關系:利潤=每件利潤×銷售量,每件利潤=每件售價﹣每件進價.再根據(jù)所列二次函數(shù)求最大值.【詳解】解:設利潤為w元,則w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,∵10≤x≤20,∴當x=1時,二次函數(shù)有最大值25,故答案是:1.【點睛】本題考查了二次函數(shù)的應用,此題為數(shù)學建模題,借助二次函數(shù)解決實際問題.17、y(x+1)(x﹣1)【解析】

觀察原式x2y﹣y,找到公因式y(tǒng)后,提出公因式后發(fā)現(xiàn)x2-1符合平方差公式,利用平方差公式繼續(xù)分解可得.【詳解】解:x2y﹣y=y(tǒng)(x2﹣1)=y(tǒng)(x+1)(x﹣1).故答案為:y(x+1)(x﹣1).【點睛】本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.三、解答題(共7小題,滿分69分)18、(1)當t=時,PQ∥BC;(2)﹣(t﹣)2+,當t=時,y有最大值為;(3)存在,當t=時,四邊形PQP′C為菱形【解析】

(1)只要證明△APQ∽△ABC,可得=,構建方程即可解決問題;(2)過點P作PD⊥AC于D,則有△APD∽△ABC,理由相似三角形的性質(zhì)構建二次函數(shù)即可解決問題;

(3)存在.由△APO∽△ABC,可得=,即=,推出OA=(5﹣t),根據(jù)OC=CQ,構建方程即可解決問題;【詳解】(1)在Rt△ABC中,AB===10,BP=2t,AQ=t,則AP=10﹣2t,∵PQ∥BC,∴△APQ∽△ABC,∴=,即=,解得t=,∴當t=時,PQ∥BC.(2)過點P作PD⊥AC于D,則有△APD∽△ABC,∴=,即=,∴PD=6﹣t,∴y=t(6﹣t)=﹣(t﹣)2+,∴當t=時,y有最大值為.(3)存在.理由:連接PP′,交AC于點O.∵四邊形PQP′C為菱形,∴OC=CQ,∵△APO∽△ABC,∴=,即=,∴OA=(5﹣t),∴8﹣(5﹣t)=(8﹣t),解得t=,∴當t=時,四邊形PQP′C為菱形.【點睛】本題考查四邊形綜合題、相似三角形的判定和性質(zhì)、平行線的性質(zhì)、勾股定理等知識,解題的關鍵是學會添加常用輔助線,構造相似三角形解決問題,學會理由參數(shù)構建方程解決問題,屬于中考壓軸題.19、(1)y=﹣x2+x+2;(2)m=﹣1或m=3時,四邊形DMQF是平行四邊形;(3)點Q的坐標為(3,2)或(﹣1,0)時,以點B、Q、M為頂點的三角形與△BOD相似.【解析】

分析:(1)待定系數(shù)法求解可得;

(2)先利用待定系數(shù)法求出直線BD解析式為y=x-2,則Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四邊形DMQF是平行四邊形知QM=DF,據(jù)此列出關于m的方程,解之可得;

(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再證△MBQ∽△BPQ得,即,解之即可得此時m的值;②∠BQM=90°,此時點Q與點A重合,△BOD∽△BQM′,易得點Q坐標.詳解:(1)由拋物線過點A(-1,0)、B(4,0)可設解析式為y=a(x+1)(x-4),

將點C(0,2)代入,得:-4a=2,

解得:a=-,

則拋物線解析式為y=-(x+1)(x-4)=-x2+x+2;

(2)由題意知點D坐標為(0,-2),

設直線BD解析式為y=kx+b,

將B(4,0)、D(0,-2)代入,得:,解得:,

∴直線BD解析式為y=x-2,

∵QM⊥x軸,P(m,0),

∴Q(m,-m2+m+2)、M(m,m-2),

則QM=-m2+m+2-(m-2)=-m2+m+4,

∵F(0,)、D(0,-2),

∴DF=,

∵QM∥DF,

∴當-m2+m+4=時,四邊形DMQF是平行四邊形,

解得:m=-1(舍)或m=3,

即m=3時,四邊形DMQF是平行四邊形;

(3)如圖所示:

∵QM∥DF,

∴∠ODB=∠QMB,

分以下兩種情況:

①當∠DOB=∠MBQ=90°時,△DOB∽△MBQ,

則,

∵∠MBQ=90°,

∴∠MBP+∠PBQ=90°,

∵∠MPB=∠BPQ=90°,

∴∠MBP+∠BMP=90°,

∴∠BMP=∠PBQ,

∴△MBQ∽△BPQ,

∴,即,

解得:m1=3、m2=4,

當m=4時,點P、Q、M均與點B重合,不能構成三角形,舍去,

∴m=3,點Q的坐標為(3,2);

②當∠BQM=90°時,此時點Q與點A重合,△BOD∽△BQM′,

此時m=-1,點Q的坐標為(-1,0);

綜上,點Q的坐標為(3,2)或(-1,0)時,以點B、Q、M為頂點的三角形與△BOD相似.點睛:本題主要考查二次函數(shù)的綜合問題,解題的關鍵是掌握待定系數(shù)法求函數(shù)解析式、平行四邊形的判定與性質(zhì)、相似三角形的判定與性質(zhì)及分類討論思想的運用.【詳解】請在此輸入詳解!20、CD的長度為17﹣17cm.【解析】

在直角三角形中用三角函數(shù)求出FD,BE的長,而FC=AE=AB+BE,而CD=FC-FD,從而得到答案.【詳解】解:由題意,在Rt△BEC中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=,∴BE=ECtan30°=51×=17(cm);∴CF=AE=34+BE=(34+17)cm,在Rt△AFD中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm,則CD=FC﹣FD=34+17﹣51=17﹣17,答:CD的長度為17﹣17cm.【點睛】本題主要考查了在直角三角形中三角函數(shù)的應用,解本題的要點在于求出FC與FD的長度,即可求出答案.21、(1)c>﹣2;(2)x1=﹣1,x2=1.【解析】

(1)根據(jù)拋物線與x軸有兩個交點,b2-4ac>0列不等式求解即可;

(2)先求出拋物線的對稱軸,再根據(jù)拋物線的對稱性求出拋物線與x軸的另一個交點坐標,然后根據(jù)二次函數(shù)與一元二次方程的關系解答.【詳解】(1)解:∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,即16+8c>0,解得c>﹣2;(2)解:由y=﹣2x2+4x+c得拋物線的對稱軸為直線x=1,∵拋物線經(jīng)過點(﹣1,0),∴拋物線與x軸的另一個交點為(1,0),∴方程﹣2x2+4x+c=0的根為x1=﹣1,x2=1.【點睛】考查了拋物線與x軸的交點問題、二次函數(shù)與一元二次方程,解題關鍵是運用了根與系數(shù)的關系以及二次函數(shù)的對稱性.22、見解析.【解析】

(1)畫出⊙O的兩條直徑,交點即為圓心O.(2)作直線AO交⊙O于F,直線BF即為所求.【詳解】解:作圖如下:(1);(2).【點睛】本題考查作圖?復雜作圖,圓周角定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.23、(1)證明見解析(2)7/24(3)25/6【解析】(1)證明:∵△BDC′由△BDC翻折而成,∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DG

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論