海南省臨高縣2024-2025學年數(shù)學九上開學綜合測試模擬試題【含答案】_第1頁
海南省臨高縣2024-2025學年數(shù)學九上開學綜合測試模擬試題【含答案】_第2頁
海南省臨高縣2024-2025學年數(shù)學九上開學綜合測試模擬試題【含答案】_第3頁
海南省臨高縣2024-2025學年數(shù)學九上開學綜合測試模擬試題【含答案】_第4頁
海南省臨高縣2024-2025學年數(shù)學九上開學綜合測試模擬試題【含答案】_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁海南省臨高縣2024-2025學年數(shù)學九上開學綜合測試模擬試題題號一二三四五總分得分批閱人A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)若直線經(jīng)過第一、二、四象限,則化簡的結(jié)果是()A.2k B.2k C.k2 D.不能確定2、(4分)在四邊形ABCD中,對角線AC、BD交于點O,下列條件中,不能判定四邊形ABCD是平行四邊形的是()A.AB=DC,AD=BC B.AD∥BC,AD=BCC.AB∥DC,AD=BC D.OA=OC,OD=OB3、(4分)如圖,,矩形在的內(nèi)部,頂點,分別在射線,上,,,則點到點的最大距離是()A. B. C. D.4、(4分)乒乓球是我國的國球,也是世界上流行的球類體育項目.我國乒乓球名將與其對應身高如下表所示:乒乓球名將劉詩雯鄧亞萍白楊丁寧陳夢孫穎莎姚彥身高(cm)160155171173163160175這些乒乓球名將身高的中位數(shù)和眾數(shù)是()A.160,163 B.173,175 C.163,160 D.172,1605、(4分)下列說法中正確的是()A.四邊相等的四邊形是正方形B.一組對邊相等且另一組對邊平行的四邊形是平行四邊形C.對角線互相垂直的四邊形是菱形D.對角線相等的平行四邊形是矩形6、(4分)下列說法正確的是()A.平行四邊形的對角線相等B.一組對邊平行,一組對邊相等的四邊形是平行四邊形C.對角線互相平分的四邊形是平行四邊形D.有兩對鄰角互補的四邊形是平行四邊形7、(4分)如圖,四邊形ABCD中,對角線相交于點O,E、F、G、H分別是AD、BD、BC、AC的中點,要使四邊形EFGH是矩形,則四邊形ABCD需要滿足的條件是A. B. C. D.8、(4分)在四邊形中,,再補充一個條件使得四邊形為菱形,這個條件可以是()A. B.C. D.與互相平分二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)已知關于的方程的解是正數(shù),則的取值范圍是__________.10、(4分)已知一元二次方程的兩個解恰好分別是等腰的底邊長和腰長,則的周長為__________.11、(4分)若干桶方便面擺放在桌子上.實物圖片左邊所給的是它的三視圖.則這一堆方便面共有桶.12、(4分)如圖,將繞點按順時針方向旋轉(zhuǎn)至,使點落在的延長線上.已知,則___________度;如圖,已知正方形的邊長為分別是邊上的點,且,將繞點逆時針旋轉(zhuǎn),得到.若,則的長為_________.13、(4分)如圖,在△ABC中,AB=6,點D是AB的中點,過點D作DE∥BC,交AC于點E,點M在DE上,且ME=DM.當AM⊥BM時,則BC的長為____.三、解答題(本大題共5個小題,共48分)14、(12分)四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點,且DE=BF,連接AE、AF、EF.(1)求證:△ADE≌△ABF;(2)填空:△ABF可以由△ADE繞旋轉(zhuǎn)中心點,按順時針方向旋轉(zhuǎn)度得到;(3)若BC=8,DE=6,求△AEF的面積.15、(8分)解不等式組,并將不等式組的解集在下面的數(shù)軸上表示出來:.16、(8分)閱讀下列一段文字,然后回答下列問題:已知平面內(nèi)兩點P1(x1,y1),P2(x2,y2),其兩點間的距離。例如:已知P(3,1),Q(1,-2),則這兩點間的距離.特別地,如果兩點M(x1,y1),N(x2,y2),所在的直線與坐標軸重合或平行于坐標軸或者垂直于坐標軸,那么這兩點間的距離公式可簡化為或。(1)已知A(2,3),B(-1,-2),則A,B兩點間的距離為_________;(2)已知M,N在平行于y軸的直線上,點M的縱坐標為-2,點N的縱坐標為3,則M,N兩點間的距離為_________;(3)在平面直角坐標系中,已知A(0,4),B(4,2),在x軸上找點P,使PA+PB的長度最短,求出點P的坐標及PA+PB的最短長度.17、(10分)已知一次函數(shù)的圖象過點,.(1)求此函數(shù)的表達式;(2)若點在此函數(shù)的圖象上,求的值.18、(10分)如圖,四邊形是正方形,是邊所在直線上的點,,且交正方形外角的平分線于點.(1)當點在線段中點時(如圖①),易證,不需證明;(2)當點在線段上(如圖②)或在線段延長線上(如圖③)時,(1)中的結(jié)論是否仍然成立?請寫出你的猜想,并選擇圖②或圖③的一種結(jié)論給予證明.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)2-1=_____________20、(4分)使有意義的x的取值范圍是______.21、(4分)計算:(1+)2×(1﹣)2=_____.22、(4分)如圖,在中,對角線與相交于點,是邊的中點,連結(jié).若,,則的度數(shù)為_______.23、(4分)把直線y=x-1向下平移后過點(3,-2),則平移后所得直線的解析式為________.二、解答題(本大題共3個小題,共30分)24、(8分)如圖所示,已知直線L過點A(0,1)和B(1,0),P是x軸正半軸上的動點,OP的垂直平分線交L于點Q,交x軸于點M.(1)直接寫出直線L的解析式;(2)設OP=t,△OPQ的面積為S,求S關于t的函數(shù)關系式;并求出當0<t<2時,S的最大值;(3)直線L1過點A且與x軸平行,問在L1上是否存在點C,使得△CPQ是以Q為直角頂點的等腰直角三角形?若存在,求出點C的坐標,并證明;若不存在,請說明理由.25、(10分)如圖,一次函數(shù)的圖象與軸、軸分別交于、兩點,與反比例函數(shù)交于點,過點分別作軸、軸的垂線,垂足分別為點、.若,,.(1)求點的坐標;(2)求一次函數(shù)和反比例函數(shù)的表達式.26、(12分)如圖,將一個三角板放在邊長為1的正方形上,并使它的直角頂點在對角線上滑動,直角的一邊始終經(jīng)過點,另一邊與射線相交于點.(1)當點在邊上時,過點作分別交,于點,,證明:;(2)當點在線段的延長線上時,設、兩點間的距離為,的長為.①直接寫出與之間的函數(shù)關系,并寫出函數(shù)自變量的取值范圍;②能否為等腰三角形?如果能,直接寫出相應的值;如果不能,說明理由.

參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、B【解析】

根據(jù)一次函數(shù)圖像的性質(zhì),函數(shù)圖像過一、二、四象限,則k<0.b>0.并考察了絕對值的性質(zhì).【詳解】∵直線y=kx+2經(jīng)過第一、二、四象限,∴k<0,∴k-2<0,∴|k-2|=2-k,故選B.本題考查了一次函數(shù)圖像的性質(zhì),難點在于根據(jù)函數(shù)所過象限確定系數(shù)的值.2、C【解析】

根據(jù)平行四邊形的判定方法逐一進行分析判斷即可.【詳解】A.AB=DC,AD=BC,根據(jù)兩組對邊分別平行的四邊形是平行四邊形可以判定四邊形ABCD是平行四邊形,故不符合題意;B.AD∥BC,AD=BC,根據(jù)一組對邊平行且相等的四邊形是平行四邊形可以判定四邊形ABCD是平行四邊形,故不符合題意;C.AB∥DC,AD=BC,一組對邊平行,另一組對邊平行的四邊形可能是平行四邊形也可能是等腰梯形,故符合題意;D.OA=OC,OD=OB,根據(jù)對角線互相平分的四邊形是平行四邊形可以判定四邊形ABCD是平行四邊形,故不符合題意,故選C.本題考查了平行四邊形的判定,熟練掌握平行四邊形的判定方法是解題的關鍵.3、B【解析】

取DC的中點E,連接OE、DE、OD,根據(jù)三角形的任意兩邊之和大于第三邊可知當O、E、D三點共線時,點D到點O的距離最大,再根據(jù)勾股定理求出DE的長,根據(jù)直角三角形斜邊上的中線等于斜邊的一半求出OE的長,兩者相加即可得解.【詳解】取中點,連接、、,,.在中,利用勾股定理可得.在中,根據(jù)三角形三邊關系可知,當、、三點共線時,最大為.故選:.本題考查了直角三角形斜邊上的中線等于斜邊的一半得到性質(zhì),三角形的三邊關系,矩形的性質(zhì),勾股定理,根據(jù)三角形的三邊關系判斷出點O、E、D三點共線時,點D到點O的距離最大是解題的關鍵.4、C【解析】

根據(jù)中位數(shù)和眾數(shù)的定義求解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù);【詳解】解:把數(shù)據(jù)從小到大的順序排列為:155,1,1,2,171,173,175;在這一組數(shù)據(jù)中1是出現(xiàn)次數(shù)最多的,故眾數(shù)是1.處于中間位置的數(shù)是2,那么由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是2.故選:C.此題考查中位數(shù)與眾數(shù)的意義,掌握基本概念是解決問題的關鍵.5、D【解析】

正方形:有一個角是直角且有一組鄰邊相等的平行四邊形.平行四邊形:有兩組對邊分別平行的四邊形.菱形:在一個平面內(nèi),有一組鄰邊相等的平行四邊形.矩形:有一個角是直角的平行四邊形,矩形也叫長方形.【詳解】A選項中四邊相等的四邊形不能證明是正方形,有可能是菱形.則A錯誤.B選項一組對邊相等且另一組對邊平行的四邊形不一定是平行四邊形,有可能是等腰梯形,所以B錯誤.C選項中,對角線互相垂直,不能判定四邊形是菱形.根據(jù)正方形、平行四邊形、菱形、矩形的性質(zhì)與判定,即可得出本題正確答案為D.本題的關鍵在于:熟練掌握正方形、平行四邊形、菱形、矩形的性質(zhì)與判定.6、C【解析】

由平行四邊形的判定和性質(zhì),依次判斷可求解.【詳解】解:A、平行四邊形的對角線互相平分,但不一定相等,故A選項不合題意;B、一組對邊平行,一組對邊相等的四邊形可能是等腰梯形,故B選項不合題意;C、對角線互相平分的四邊形是平行四邊形,故C選項符合題意;D、有兩對鄰角互補的四邊形可能是等腰梯形,故D選項不合題意;故選:C.本題考查了平行四邊形的判定和性質(zhì),熟練掌握相關性質(zhì)定理是解題的關鍵.7、B【解析】

根據(jù)“有一內(nèi)角為直角的平行四邊形是矩形”來推斷由三角形中位線定理和平行四邊形的判定定理易推知四邊形EFGH是平行四邊形,若或者就可以判定四邊形EFGH是矩形.【詳解】當時,四邊形EFGH是矩形,,,,,即,四邊形EFGH是矩形;故選:B.此題考查了中點四邊形的性質(zhì)、矩形的判定以及三角形中位線的性質(zhì)此題難度適中,注意掌握數(shù)形結(jié)合思想的應用.8、D【解析】

由在四邊形ABCD中,對角線AC,BD互相平分,可得四邊形ABCD是平行四邊形,又由對角線互相垂直的平行四邊形是菱形,即可求得答案.【詳解】解:∵在四邊形ABCD中,對角線AC,BD互相平分,∴四邊形ABCD是平行四邊形,∵AC⊥BD,∴四邊形ABCD是菱形,故選:D.此題考查了平行四邊形的判定以及菱形的判定.此題比較簡單,注意掌握對角線互相垂直的平行四邊形是菱形定理的應用.二、填空題(本大題共5個小題,每小題4分,共20分)9、m>-6且m-4【解析】試題分析:分式方程去分母轉(zhuǎn)化為整式方程,表示出x,根據(jù)x為正數(shù)列出關于m的不等式,求出不等式的解集即可確定出m的范圍.試題解析:分式方程去分母得:2x+m=3(x-2),解得:x=m+6,根據(jù)題意得:x=m+6>0,且m+6≠2,解得:m>-6,且m≠-4.考點:分式方程的解.10、2【解析】

用因式分解法可以求出方程的兩個根分別是3和1,根據(jù)等腰三角形的三邊關系,腰應該是1,底是3,然后可以求出三角形的周長.【詳解】x2-9x+18=0

(x-3)(x-1)=0

解得x1=3,x2=1.

由三角形的三邊關系可得:腰長是1,底邊是3,

所故周長是:1+1+3=2.

故答案為:2.此題考查解一元二次方程-因式分解,解題關鍵在于用十字相乘法因式分解求出方程的兩個根,然后根據(jù)三角形的三邊關系求出三角形的周長.11、1【解析】從俯視圖中可以看出最底層方便面的個數(shù)及擺放的形狀,從主視圖可以看出每一層方便面的層數(shù)和個數(shù),從左視圖可看出每一行方便面的層數(shù)和個數(shù),從而算出總的個數(shù).所以三摞方便面是桶數(shù)之和為:3+1+2=1.12、462.1【解析】

先利用三角形外角性質(zhì)得∠ACA′=∠A+∠B=67°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠BCB′=∠ACA′=67°,然后利用平角的定義計算∠ACB′的度數(shù);由旋轉(zhuǎn)可得DE=DM,∠EDM為直角,可得出∠EDF+∠MDF=90°,由∠EDF=41°,得到∠MDF為41°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF與三角形MDF全等,由全等三角形的對應邊相等可得出EF=MF;則可得到AE=CM=1,正方形的邊長為3,用AB-AE求出EB的長,再由BC+CM求出BM的長,設EF=MF=x,可得出BF=BM-FM=BM-EF=4-x,在直角三角形BEF中,利用勾股定理列出關于x的方程,求出方程的解得到x的值,即為FM的長..【詳解】解:∵∠A=27°,∠B=40°,∴∠ACA′=∠A+∠B=67°,∵△ABC繞點C按順時針方向旋轉(zhuǎn)至△A′B′C,∴∠BCB′=∠ACA′=67°,∴∠ACB′=180°-67°-67°=46°.∵△DAE逆時針旋轉(zhuǎn)90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F、C、M三點共線,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=41°,∴∠FDM=∠EDF=41°,在△DEF和△DMF中,,∴△DEF≌△DMF(SAS),∴EF=MF,設EF=MF=x,∵AE=CM=1,且BC=3,∴BM=BC+CM=4,∴BF=BM-MF=BM-EF=4-x,∵EB=AB-AE=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4-x)2=x2,解得:x=2.1,∴FM=2.1.故答案為:46;2.1.本題考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),以及勾股定理的綜合應用.解題的關鍵是掌握旋轉(zhuǎn)前后圖形的對應關系,注意掌握數(shù)形結(jié)合思想與方程思想的應用.13、1【解析】

根據(jù)直角三角形的性質(zhì)(斜邊上的中線等于斜邊的一半),求出DM=AB=3,即可得到ME=1,根據(jù)題意求出DE=DM+ME=4,根據(jù)三角形中位線定理可得BC=2DE=1.【詳解】解:∵AM⊥BM,點D是AB的中點,

∴DM=AB=3,

∵ME=DM,

∴ME=1,

∴DE=DM+ME=4,

∵D是AB的中點,DE∥BC,

∴BC=2DE=1,

故答案為:1.點睛:本題考查的是三角形的中位線定理的應用,掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關鍵.三、解答題(本大題共5個小題,共48分)14、解:(1)見解析(2)A;90;(3)50【解析】

試題分析:(1)根據(jù)正方形的性質(zhì)得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易證得△ADE≌△ABF.(2)∵△ADE≌△ABF,∴∠BAF=∠DAE.而∠DAE+∠EBF=90°,∴∠BAF+∠EBF=90°,即∠FAE=90°.∴△ABF可以由△ADE繞旋轉(zhuǎn)中心A點,按順時針方向旋轉(zhuǎn)90度得到.(3)先利用勾股定理可計算出AE=10,在根據(jù)△ABF可以由△ADE繞旋轉(zhuǎn)中心A點,按順時針方向旋轉(zhuǎn)90度得到AE=AF,∠EAF=90°,然后根據(jù)直角三角形的面積公式計算即可.【詳解】解:(1)證明:∵四邊形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°.又∵點F是CB延長線上的點,∴∠ABF=90°.在△ADE和△ABF中,∵,∴△ADE≌△ABF(SAS).(2)A;90.(3)∵BC=8,∴AD=8.在Rt△ADE中,DE=6,AD=8,∴.∵△ABF可以由△ADE繞旋轉(zhuǎn)中心A點,按順時針方向旋轉(zhuǎn)90度得到,∴AE=AF,∠EAF=90°.∴△AEF的面積=AE2=×100=50(平方單位).15、,將不等式組的解集在數(shù)軸上表示見解析.【解析】

分別解兩個不等式得兩個不等式的解集,然后根據(jù)確定不等式組解集的方法確定解集,最后利用數(shù)軸表示其解集.【詳解】由(1)可得由(2)可得∴原不等式組解集為本題考查了解一元一次不等式組:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集.解集的規(guī)律:同大取大;同小取??;大小小大中間找;大大小小找不到.16、(1);(2)5;(3)PA+PB的長度最短時,點P的坐標為(,0),PA+PB的最短長度為.【解析】

(1)直接利用兩點之間距離公式直接求出即可;

(2)根據(jù)題意列式計算即可;

(3)利用軸對稱求最短路線方法得出P點位置,進而求出PA+PB的最小值.【詳解】(1)(1)∵A(2,3),B(-1,-2),

∴A,B兩點間的距離為:;(2)∵M,N在平行于y軸的直線上,點M的縱坐標為-2,點N的縱坐標為3,

則M,N兩點間的距離為3-(-2)=5;(3)如圖,作點A關于x軸的對稱點A′,連接A′B與x軸交于點P,此時PA+PB最短設A′B的解析式為y=kx+b將A′(0,-4),B(4,2)代入y=kx+b得解得∴直線設A′B的解析式為令y=0得∴P(0,).∵PA′=PA∴PA+PB=PA′+PB=A′B=∴PA+PB的長度最短時,點P的坐標為(,0),PA+PB的最短長度為.考查了利用軸對稱求最值問題以及兩點之間距離公式,正確轉(zhuǎn)化代數(shù)式為兩點之間距離問題是解題關鍵.17、(1)y=x+3;(2)a=4;

【解析】

(1)把A、B兩點坐標代入y=kx+b中得到關于k、b的方程組,然后解方程組求出k、b即可得到一次函數(shù)解析式;

(2)根據(jù)一次函數(shù)圖象上點的坐標特征,把(a,6)代入一次函數(shù)解析式中可求出a的值;【詳解】(1)把A(0,3),B(-4,0)代入y=kx+b得,解得.

所以一次函數(shù)解析式為y=x+3;

(2)把(a,6)代入y=x+3得a+3=6,解得a=4;此題考查待定系數(shù)法求一次函數(shù)解析式,解題關鍵在于先設出函數(shù)的一般形式,如求一次函數(shù)的解析式時,先設y=kx+b;再將自變量x的值及與它對應的函數(shù)值y的值代入所設的解析式,得到關于待定系數(shù)的方程或方程組;然后解方程或方程組,求出待定系數(shù)的值,進而寫出函數(shù)解析式.18、(1)見解析;(2)成立,理由見解析.【解析】

(1)圖①在AB上取一點M,使AM=EC,連接ME,證明△AME≌△BCF,從而可得到AE=EF;(2)圖②在AB上取一點M,使AM=EC,連接ME,證明△AME≌△BCF,從而可得到AE=EF;圖③在BA的延長線上取一點N,使AN=CE,連接NE,然后證明△ANE≌△ECF,從而可得到AE=EF.【詳解】解:在上取一點,使,連接.∴.∴.∴.∵是外角的平分線,∴.∴.∴.∵,,∴.∴.∴.(2)圖②結(jié)論:.圖③結(jié)論:.圖②證明:如圖②,在上取一點,使,連接.∴.∴.∴.∵是外角的平分線,∴.∴.∴.∵,,∴.∴.∴.圖③證明:如圖③,在的延長線上取一點,使,連接.∴.∴.∵四邊形是正方形,∴.∴.∴.∴.∴.本題主要考查的是全等三角形的性質(zhì)和判定、正方形的性質(zhì)的應用等知識,解題的關鍵是學會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考??碱}型.一、填空題(本大題共5個小題,每小題4分,共20分)19、【解析】

根據(jù)負指數(shù)冪的運算法則即可解答.【詳解】原式=2-1=.本題考查了負指數(shù)冪的運算法則,牢記負指數(shù)冪的運算法則是解答本題的關鍵.20、【解析】二次根式有意義的條件.【分析】根據(jù)二次根式被開方數(shù)必須是非負數(shù)的條件,要使在實數(shù)范圍內(nèi)有意義,必須.21、1【解析】

根據(jù)積的乘方法則及平方差公式計算即可.【詳解】原式=2.=.=1.故答案為1.本題考查積的乘方及平方差公式,熟練掌握并靈活運用是解題關鍵.22、40°【解析】

直接利用三角形內(nèi)角和定理得出的度數(shù),再利用三角形中位線定理結(jié)合平行線的性質(zhì)得出答案.【詳解】解:,,,對角線與相交于點,是邊的中點,是的中位線,,.故答案為:.此題主要考查了三角形內(nèi)角和定理、三角形中位線定理等知識,得出是的中位線是解題關鍵.23、y=x-2【解析】

解:設直線向下平移了h個單位,y=x-2-h,過(3,-2),所以-2=3-2-h所以h=-4所以y=x-2故答案為:y=x-2.本題考查一次函數(shù)圖象左右平移,上下平移方法,口訣“左加右減,上加下減”.y=kx+b左移2個單位,y=k(x+2)+b;y=kx+b右移2個單位,y=k(x-2)+b;y=kx+b上移2個單位,y=kx+b+2;y=kx+b下移2個單位,y=kx+b-2.二、解答題(本大題共3個小題,共30分)24、(1)y=1﹣x;(2),S有最大值;(3)存在點C(1,1).【解析】

(1)已知直線L過A,B兩點,可將兩點的坐標代入直線的解析式中,用待定系數(shù)法求出直線L的解析式;(2)求三角形OPQ的面積,就需知道底邊OP和高QM的長,已知了OP為t,關鍵是求出QM的長.已知了QM垂直平分OP,那么OM=t,然后要分情況討論:①當OM<OB時,即0<t<2時,BM=OB﹣OM,然后在等腰直角三角形BQM中,即可得出QM=BM,由此可根據(jù)三角形的面積公式得出S與t的函數(shù)關系式;②當OM>OB時,即當t≥2時,BM=OM﹣OB,然后根據(jù)①的方法即可得出S與t的函數(shù)關系式,然后可根據(jù)0<t<2時的函數(shù)的性質(zhì)求出S的最大值;(3)如果存在這樣的點C,那么CQ=QP=OQ,因此C,O就關于直線BL對稱,因此C的坐標應該是(1,1).那么只需證明CQ⊥PQ即可.分三種情況進行討論:①當Q在線段AB上(Q,B不重合),且P在線段OB上時.要證∠CQP=90°,那么在四邊形CQPB中,就需先證出∠QCB與∠QPB互補,由于∠QPB與∠QPO互補,而∠QPO=∠QOP,因此只需證∠QCB=∠QOB即可,根據(jù)折疊的性質(zhì),這兩個角相等,由此可得證;②當Q在線段AB上,P在OB的延長線上時,根據(jù)①已得出∠QPB=∠QCB,那么這兩個角都加上一個相等的對頂角后即可得出∠CQP=∠CBP=90度;③當Q與B重合時,很顯然,三角形CQP應該是個等腰直角三角形.綜上所述即可得出符合條件C點的坐標.【詳解】(1)y=1﹣x;(2)∵OP=t,∴Q點的橫坐標為t,①當,即0<t<2時,QM=1-t,∴S△OPQ=t(1﹣t),②當t≥2時,QM=|1﹣t|=t﹣1,∴S△OPQ=t(t﹣1),∴當0<t<1,即0<t<2時,S=t(1﹣t)=﹣(t﹣1)2+,∴當t=1時,S有最大值;(3)由OA=OB=1,故△OAB是等腰直角三角形,若在L1上存在點C,使得△CPQ是以Q為直角頂點的等腰直角三角形,則PQ=QC,所以OQ=QC,又L1∥x軸,則C,O兩點關于直線L對稱,所以AC=OA=1,得C(1,1).下面證∠PQC=90度.連CB,則四邊

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論