版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆河北省博野縣數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若是函數(shù)的一個極值點,則的極大值為()A. B.C. D.2.將一顆骰子先后拋擲2次,觀察向上的點數(shù),則點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為()A. B.C. D.3.已知橢圓:的左、右焦點為,,上頂點為P,則()A.為銳角三角形 B.為鈍角三角形C.為直角三角形 D.,,三點構(gòu)不成三角形4.若拋物線焦點與橢圓的右焦點重合,則的值為A. B.C. D.5.曲線上的點到直線的距離的最小值是()A.3 B.C.2 D.6.已知函數(shù),,若,使得,則實數(shù)的取值范圍是()A. B.C. D.7.已知p、q是兩個命題,若“(¬p)∨q”是假命題,則()A.p、q都是假命題 B.p、q都是真命題C.p是假命題q是真命題 D.p是真命題q是假命題8.已知函數(shù),,當(dāng)時,不等式恒成立,則實數(shù)的取值范圍為()A. B.C. D.9.等比數(shù)列滿足,,則()A.11 B.C.9 D.10.古希臘數(shù)學(xué)家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積,已知橢圓的面積為,、分別是的兩個焦點,過的直線交于、兩點,若的周長為,則的離心率為()A. B.C. D.11.已知直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.12.“”是“圓與軸相切”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知平面和兩條不同的直線,則下列判斷中正確的序號是___________.①若,則;②若,則;③若,則;④若,則;14.已知為拋物線的焦點,為拋物線上的任意一點,點,則的最小值為______.15.如圖,在平行六面體中,底面是邊長為1的正方形,的長度為2,且,則的長度為________16.過拋物線的焦點作傾斜角為的直線,與拋物線分別交于兩點(點在軸上方),_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)2020年8月,總書記對制止餐飲浪費(fèi)行為作出重要指示,要求進(jìn)一步加強(qiáng)宣傳教育,切實培養(yǎng)節(jié)約習(xí)慣,在全社會營造浪費(fèi)可恥、節(jié)約光榮的氛圍.為貫徹總書記指示,大慶市某學(xué)校食堂從學(xué)生中招募志愿者,協(xié)助食堂宣傳節(jié)約糧食的相關(guān)活動.現(xiàn)已有高一63人、高二42人,高三21人報名參加志愿活動.根據(jù)活動安排,擬采用分層抽樣的方法,從已報名的志愿者中抽取12名志愿者,參加為期20天的第一期志愿活動(1)第一期志愿活動需從高一、高二、高三報名的學(xué)生中各抽取多少人?(2)現(xiàn)在要從第一期志愿者中的高二、高三學(xué)生中抽取2人粘貼宣傳標(biāo)語,求抽出兩人都是高二學(xué)生的概率是多少?(3)食堂每天約有400人就餐,其中一組志愿者的任務(wù)是記錄學(xué)生每天倒掉的剩菜剩飯的重量(單位:公斤),以10天為單位來衡量宣傳節(jié)約糧食的效果.在一個周期內(nèi),這組志愿者記錄的數(shù)據(jù)如下:前10天剩菜剩飯的重量為:后天剩菜剩飯的重量為:借助統(tǒng)計中的圖、表、數(shù)字特征等知識,分析宣傳節(jié)約糧食活動的效果(選擇一種方法進(jìn)行說明即可)18.(12分)已知橢圓的上一點處的切線方程為,橢圓C上的點與其右焦點F的最短距離為,離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若點P為直線上任一點,過P作橢圓的兩條切線PA,PB,切點為A,B,求證:19.(12分)如圖,已知橢圓:經(jīng)過點,離心率(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)是經(jīng)過右焦點的任一弦(不經(jīng)過點),直線與直線:相交于點,記,,的斜率分別為,,,求證:,,成等差數(shù)列20.(12分)已知函數(shù)圖像在點處的切線方程為.(1)求實數(shù)、的值;(2)求函數(shù)在上的最值.21.(12分)設(shè)函數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個不同的零點,求實數(shù)的取值范圍22.(10分)如圖,在梯形中,,,四邊形為矩形,且平面,.(1)求證:平面;(2)點在線段含端點上運(yùn)動,當(dāng)點在什么位置時,平面與平面所成銳二面角最大,并求此時二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】先對函數(shù)求導(dǎo),由已知,先求出,再令,并判斷函數(shù)在其左右兩邊的單調(diào)性,從而確定極大值點,然后帶入原函數(shù)即可完成求解.【詳解】因為,,所以,所以,,令,解得或,所以當(dāng),,單調(diào)遞增;時,,單調(diào)遞減;當(dāng),,單調(diào)遞增,所以的極大值為故選:D2、B【解析】基本事件總數(shù),再利用列舉法求出點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件的個數(shù),由此能求出點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率【詳解】解:將一顆骰子先后拋擲2次,觀察向上的點數(shù)之和,基本事件總數(shù),點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件有:,,,,,,,,共8個,則點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為故選:B3、A【解析】根據(jù)題意求得,要判斷的形狀,只需要看是什么角即可,利用余弦定理判斷,從而可得結(jié)論.【詳解】解:由橢圓:,得,則,則,所以且為銳角,因為,所以銳角,所以為銳角三角形.故選:A.4、D【解析】解:橢圓的右焦點為(2,0),所以拋物線的焦點為(2,0),則,故選D5、D【解析】求出函數(shù)的導(dǎo)函數(shù),設(shè)切點為,依題意即過切點的切線恰好與直線平行,此時切點到直線的距離最小,求出切點坐標(biāo),再利用點到直線的距離公式計算可得;【詳解】解:因為,所以,設(shè)切點為,則,解得,所以切點為,點到直線的距離,所以曲線上的點到直線的距離的最小值是;故選:D6、A【解析】由定義證明函數(shù)的單調(diào)性,再由函數(shù)不等式恒能成立的性質(zhì)得出,從而得出實數(shù)的取值范圍.【詳解】任取,,即函數(shù)在上單調(diào)遞減,若,使得,則即故選:A【點睛】結(jié)論點睛:本題考查不等式恒成立問題,解題關(guān)鍵是轉(zhuǎn)化為求函數(shù)的最值,轉(zhuǎn)化時要注意全稱量詞與存在量詞對題意的影響.等價轉(zhuǎn)化如下:(1),,使得成立等價于(2),,不等式恒成立等價于(3),,使得成立等價于(4),,使得成立等價于7、D【解析】由已知可得¬p,q都是假命題,從而可分析判斷各選項【詳解】∵“(¬p)∨q”是假命題,∴¬p,q都是假命題,∴p真,q假,故選:D.8、C【解析】由題意得出,構(gòu)造函數(shù),可知函數(shù)在區(qū)間上單調(diào)遞增,可得出對任意的恒成立,利用參變量分離法可得出,利用導(dǎo)數(shù)求得函數(shù)在區(qū)間上的最大值,由此可求得實數(shù)的取值范圍.【詳解】函數(shù)的定義域為,當(dāng)時,恒成立,即,構(gòu)造函數(shù),則,所以,函數(shù)在區(qū)間上為增函數(shù),則對任意的恒成立,,令,其中,則.,所以函數(shù)在上單調(diào)遞減;又,所以.因此,實數(shù)的取值范圍是.故選:C.9、B【解析】由已知結(jié)合等比數(shù)列的性質(zhì)即可求解.【詳解】由數(shù)列是等比數(shù)列,得:,故選:B10、A【解析】本題首先可根據(jù)題意得出,然后根據(jù)的周長為得出,最后根據(jù)求出的值,即可求出的離心率.【詳解】因為橢圓的面積為,所以長半軸長與短半軸長的乘積,因為的周長為,所以根據(jù)橢圓的定義易知,,,,則的離心率,故選:A.11、C【解析】作出輔助線,找到異面直線與所成角,進(jìn)而利用余弦定理及勾股定理求出各邊長,最后利用余弦定理求出余弦值.【詳解】如圖所示,把三棱柱補(bǔ)成四棱柱,異面直線與所成角為,由勾股定理得:,,∴故選:C12、A【解析】根據(jù)充分不必要條件的定義和圓心到軸的距離求出可得答案.【詳解】時,圓的圓心坐標(biāo)為,半徑為2,此時圓與軸相切;當(dāng)圓與軸相切時,因為圓的半徑為2,所以圓心到軸的距離為,所以,“”是“圓與軸相切”的充分不必要條件故選:A二、填空題:本題共4小題,每小題5分,共20分。13、②④【解析】根據(jù)直線與直線,直線與平面的位置關(guān)系依次判斷每個選項得到答案.詳解】若,則或,異面,或,相交,①錯誤;若,則,②正確;若,則或或與相交,③錯誤;若,則,④正確;故答案為:②④.14、【解析】由拋物線的幾何性質(zhì)知:,由圖知為的最小值,求長度即可.【詳解】點是拋物線的焦點,其準(zhǔn)線方程為,作于,作于,∴,當(dāng)且僅當(dāng)為與拋物線的交點時取得等號,∴的最小值為.故答案為:.15、【解析】設(shè)一組基地向量,將目標(biāo)用基地向量表示,然后根據(jù)向量的運(yùn)算法則運(yùn)算即可【詳解】設(shè),則有:則有:根據(jù),解得:故答案為:16、3【解析】根據(jù)拋物線焦半徑公式,所以.故答案為:3.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)6,4,2;(2);(3)答案見解析.【解析】(1)先求出抽樣比,然后每次按比例抽取即可求出;(2)先求出抽出兩人的基本事件,再求出兩人都是高二學(xué)生包含的基本事件,即可求出概率;(3)可求出平均值進(jìn)行判斷;也可畫出莖葉圖觀察判斷.【詳解】解:(1)報名的學(xué)生共有126人,抽取的比例為,所以高一抽取人,高二抽取人,高三抽取人.(2)記高二四個學(xué)生為1,2,3,4,高三兩個學(xué)生為5,6,抽出兩人表示為(x,y),則抽出兩人的基本事件為(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15個基本事件,其中高二學(xué)生都在同一組包含(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6個基本事件.記抽出兩人都是高二學(xué)生為事件,則,所以高二學(xué)生都在同一組的概率是.(3)法一:(數(shù)字特征)前10天的平均值為23.5,后10天的平均值為20.5,因為20.5<23.5,所以宣傳節(jié)約糧食活動的效果很好.法二:(莖葉圖)畫出莖葉圖因為前10天的重量集中在23、24附近,而后10天的重量集中在20附近,所以節(jié)約宣傳后剩飯剩菜明顯減少,宣傳效果很好.18、(1)(2)證明見解析【解析】(1)設(shè)為橢圓上的點,為橢圓的右焦點,求出然后求解最小值,推出,,,得到雙曲線方程(2)設(shè),,,,,即可得到,依題意可得以、為切點的切線方程,從而得到直線的方程,再分與兩種情況討論,即可得證;【小問1詳解】解:設(shè)為橢圓上的點,為橢圓的右焦點,因為,所以,又,所以當(dāng)且僅當(dāng)時,,因為,所以,,因為,所以,故橢圓的標(biāo)準(zhǔn)方程為【小問2詳解】解:由(1)知,設(shè),,,,,所以,由題知,以為切點的橢圓切線方程為,以為切點的橢圓切線方程為,又點在直線、上,所以、,所以直線的方程為,當(dāng)時,直線的斜率不存在,直線斜率為,所以,當(dāng)時,,所以,所以,綜上可得;19、(1);(2)證明見解析【解析】(1)由點在橢圓上得到,再由,得到,聯(lián)立方程組,求得的值,即可得到橢圓的標(biāo)準(zhǔn)方程;(2)由(1)得橢圓右焦點坐標(biāo),設(shè)直線的方程為,聯(lián)立方程組,求得,及,結(jié)合斜率公式得到,結(jié)合,求得,即可得到,,成等差數(shù)列【詳解】(1)由題意,點在橢圓上得,可得①又由,所以②由①②聯(lián)立且,可得,,,故橢圓的標(biāo)準(zhǔn)方程為(2)由(1)知,橢圓的方程為,可得橢圓右焦點坐標(biāo),顯然直線斜率存在,設(shè)的斜率為,則直線的方程為,聯(lián)立方程組,整理得,設(shè),,則有,,由直線的方程為,令,可得,即,從而,,,又因為共線,則有,即有,所以,將,代入得,又由,所以,即,,成等差數(shù)列【點睛】直線與圓錐曲線的綜合問題的求解策略:對于直線與圓錐曲線的位置關(guān)系的綜合應(yīng)用問題,通常聯(lián)立直線方程與圓錐曲線方程,應(yīng)用一元二次方程根與系數(shù)的關(guān)系,以及弦長公式等進(jìn)行求解,此類問題易錯點是復(fù)雜式子的變形能力不足,導(dǎo)致錯解,能較好的考查考生的邏輯思維能力、運(yùn)算求解能力20、(1)a=3,b=-9.(2)最小值=-24,最大值=8.【解析】由曲線在的值以及切線斜率容易確定a與b的值;根據(jù)導(dǎo)數(shù)很容易確定函數(shù)單調(diào)區(qū)間以及極值點.【小問1詳解】,,,由于切線方程是,當(dāng)x=1時,y=-8,即,即=-8……①;又切線的斜率為-12,∴……②;聯(lián)立①②得.【小問2詳解】由(1)得:,;當(dāng)時,,導(dǎo)函數(shù)圖像如下:在時,單調(diào)遞增,時,單調(diào)遞減,時單調(diào)遞增;∴在x=-1有極大值,x=3有極小值;在區(qū)間內(nèi):在x=-1有最大值;在x=3有最小值.21、(1)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2).【解析】(1)求出,進(jìn)而判斷函數(shù)的單調(diào)性,然后討論符號后可得函數(shù)的單調(diào)區(qū)間;(2)令,則有兩個不同的零點,利用導(dǎo)數(shù)討論的單調(diào)性并結(jié)合零點存在定理可得實數(shù)的取值范圍.【小問1詳解】當(dāng)時,,,記,則,所以在上單調(diào)遞增,又,所以當(dāng)時,;當(dāng)時,,所以單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為【小問2詳解】令,得,記,則,令得,列表得.x0↘極小值↗要使在上有兩個零點,則,所以且函數(shù)在和上各有一個零點當(dāng)時,,,,則,故上無零點,與函數(shù)在上有一個零點矛盾,故不滿足條件所以,又因為,所以考慮,設(shè),,則,則在上單調(diào)遞減,故當(dāng)時,,所以,且,因為,所以,由零點存在定理知在和上各有一個
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆高考地理一輪復(fù)習(xí)第一部分專題熱點強(qiáng)化演練專題七外力作用與地貌含解析
- 2024-2025學(xué)年九年級物理全冊15.1兩種電荷教案新版新人教版
- 鹽城師范學(xué)院《中學(xué)歷史教育研究專題》2022-2023學(xué)年第一學(xué)期期末試卷
- 2024個人住房公積金借款合同例文
- 2024汽車租賃合同范本圖片汽車租賃服務(wù)合同范本
- 鹽城師范學(xué)院《思想政治教育方法論》2021-2022學(xué)年第一學(xué)期期末試卷
- 鹽城師范學(xué)院《數(shù)據(jù)庫原理與應(yīng)用》2022-2023學(xué)年期末試卷
- 2024工程項目合作協(xié)議合同范本
- 2024年衛(wèi)星導(dǎo)航定位系統(tǒng)項目發(fā)展計劃
- 人教版四年級上冊數(shù)學(xué)第六單元《除數(shù)是兩位數(shù)的除法》測試卷含完整答案【易錯題】
- 2024-2025學(xué)年部編版語文八年級上冊 期中綜合測試卷(四)
- 2024至2030年中國別墅行業(yè)投資前景分析預(yù)測及未來趨勢發(fā)展預(yù)測報告
- 初中七年級上冊綜合實踐活動 低碳生活從我做起 教學(xué)設(shè)計
- 2024年金融貸款居間服務(wù)合同樣本(四篇)
- 2024中石油校園招聘高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 醫(yī)師定期考核(簡易程序)練習(xí)及答案
- 2022-2023學(xué)年北京市海淀區(qū)清華附中八年級(上)期中數(shù)學(xué)試卷【含解析】
- 2024-2030年中國會計師事務(wù)所行業(yè)深度分析及發(fā)展前景與發(fā)展戰(zhàn)略研究報告
- 2024年國有企業(yè)新質(zhì)生產(chǎn)力調(diào)研報告
- 2024年安全員A證考試試題庫附答案
- 2024年國家開放大學(xué)電大《金融學(xué)》形考任務(wù)答案
評論
0/150
提交評論