版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省滁州市2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線與x軸,y軸分別交于A,B兩點(diǎn),且直線l與圓相切,則的面積的最小值為()A.1 B.2C.3 D.42.圓與圓的公切線的條數(shù)為()A.1 B.2C.3 D.43.已知數(shù)列為等差數(shù)列,則下列數(shù)列一定為等比數(shù)列的是()A. B.C. D.4.已知空間向量,則()A. B.C. D.5.已知雙曲線:的左、右焦點(diǎn)分別為,,點(diǎn)在雙曲線上.若為鈍角三角形,則的取值范圍是A. B.C. D.6.若定義在R上的函數(shù)的圖象如圖所示,為函數(shù)的導(dǎo)函數(shù),則不等式的解集為()A. B.C. D.7.函數(shù)的圖象如圖所示,則下列大小關(guān)系正確的是()A.B.C.D.8.已知數(shù)列是等比數(shù)列,數(shù)列是等差數(shù)列,若,則()A. B.C. D.9.某商場(chǎng)為了解銷售活動(dòng)中某商品銷售量與活動(dòng)時(shí)間之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某次銷售活動(dòng)中的商品銷售量與活動(dòng)時(shí)間,并制作了下表:活動(dòng)時(shí)間銷售量由表中數(shù)據(jù)可知,銷售量與活動(dòng)時(shí)間之間具有線性相關(guān)關(guān)系,算得線性回歸方程為,據(jù)此模型預(yù)測(cè)當(dāng)時(shí),的值為()A B.C. D.10.饕餮紋是青銅器上常見的花紋之一,最早見于長(zhǎng)江中下游地區(qū)的良渚文化陶器和玉器上,盛行于商代至西周早期.將青銅器中的饕餮紋的一部分畫到方格紙上,如圖所示,每個(gè)小方格的邊長(zhǎng)為一個(gè)單位長(zhǎng)度,有一點(diǎn)從點(diǎn)出發(fā),每次向右或向下跳一個(gè)單位長(zhǎng)度,且向右或向下跳是等可能的,那么點(diǎn)經(jīng)過3次跳動(dòng)后恰好是沿著饕餮紋的路線到達(dá)點(diǎn)的概率為()A. B.C. D.11.已知是雙曲線的左焦點(diǎn),,是雙曲線右支上的動(dòng)點(diǎn),則的最小值為()A.9 B.8C.7 D.612.?dāng)?shù)列2,,9,,的一個(gè)通項(xiàng)公式可以是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在x=1處的切線與直線y=kx平行,則實(shí)數(shù)k=___________.14.若點(diǎn)為圓上的一個(gè)動(dòng)點(diǎn),則點(diǎn)到直線距離的最大值為________15.橢圓(a>b>0)的左、右頂點(diǎn)分別是A,B,左、右焦點(diǎn)分別是F1,F(xiàn)2.若|AF1|,|F1F2|,|F1B|成等比數(shù)列,則此橢圓的離心率為___________16.過點(diǎn)作斜率為的直線與橢圓相交于、兩個(gè)不同點(diǎn),若是的中點(diǎn),則該橢圓的離心率___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,a,b,c分別是內(nèi)角A,B,C的對(duì)邊,滿足.(1)求A;(2)若,求面積的最大值.18.(12分)已知直線經(jīng)過點(diǎn),且滿足下列條件,求相應(yīng)的方程.(1)過點(diǎn);(2)與直線垂直.19.(12分)分別求滿足下列條件的曲線方程(1)以橢圓的短軸頂點(diǎn)為焦點(diǎn),且離心率為的橢圓方程;(2)過點(diǎn),且漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程20.(12分)已知橢圓.離心率為,點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形(1)求橢圓的方程;(2)若直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn)直線的斜率之積等于,試探求的面積是否為定值,并說明理由21.(12分)已知等差數(shù)列的公差,前3項(xiàng)和,且成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.22.(10分)在銳角中,角的對(duì)邊分別為,滿足.(1)求;(2)若的面積為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由直線與圓相切可得,再利用基本不等式即求.【詳解】由已知可得,,因?yàn)橹本€與圓相切,所以,即,因?yàn)?,?dāng)且僅當(dāng)時(shí)取等號(hào),所以,,所以面積的最小值為1.故選:A2、D【解析】公切線條數(shù)與圓與圓的位置關(guān)系是相關(guān)的,所以第一步需要判斷圓與圓的位置關(guān)系.【詳解】圓的圓心坐標(biāo)為,半徑為3;圓的圓心坐標(biāo)為,半徑為1,所以兩圓的心心距為,所以兩圓相離,公切線有4條.故選:D.3、A【解析】根據(jù)等比數(shù)列的定義判斷【詳解】設(shè)的公差是,即,顯然,且是常數(shù),是等比數(shù)列,若中一個(gè)為1,則,則不是等比數(shù)列,只要,,都不可能是等比數(shù)列,如,,故選:A4、C【解析】A利用向量模長(zhǎng)的坐標(biāo)表示判斷;B根據(jù)向量平行的判定,是否存在實(shí)數(shù)使即可判斷;C向量數(shù)量積的坐標(biāo)表示求即可判斷;D利用向量坐標(biāo)的線性運(yùn)算及數(shù)量積的坐標(biāo)表示求即可.【詳解】因?yàn)?,所以A不正確:因?yàn)椴淮嬖趯?shí)數(shù)使,所以B不正確;因?yàn)?,故,所以C正確;因?yàn)?,所以,所以D不正確故選:C5、C【解析】根據(jù)雙曲線的幾何性質(zhì),結(jié)合余弦定理分別討論當(dāng)為鈍角時(shí)的取值范圍,根據(jù)雙曲線的對(duì)稱性,可以只考慮點(diǎn)在雙曲線上第一象限部分即可.【詳解】由題:雙曲線:的左、右焦點(diǎn)分別為,,點(diǎn)在雙曲線上,必有,若為鈍角三角形,根據(jù)雙曲線的對(duì)稱性不妨考慮點(diǎn)在雙曲線第一象限部分:當(dāng)為鈍角時(shí),在中,設(shè),有,,即,,所以;當(dāng)時(shí),所在直線方程,所以,,,根據(jù)圖象可得要使,點(diǎn)向右上方移動(dòng),此時(shí),綜上所述:的取值范圍是.故選:C【點(diǎn)睛】此題考查雙曲線中焦點(diǎn)三角形相關(guān)計(jì)算,關(guān)鍵在于根據(jù)幾何意義結(jié)合特殊情況分類討論,體現(xiàn)數(shù)形結(jié)合思想.6、A【解析】由函數(shù)單調(diào)性得出和的解,然后分類討論解不等式可得【詳解】由圖象可知:在為正,在為負(fù),,可化為:或,解得或故選:A7、C【解析】根據(jù)導(dǎo)數(shù)的幾何意義可得答案.【詳解】因?yàn)楹瘮?shù)在某點(diǎn)處的導(dǎo)數(shù)值表示的是此點(diǎn)處切線的斜率,所以由圖可得,故選:C8、A【解析】結(jié)合等差中項(xiàng)和等比中項(xiàng)分別求出和,代值運(yùn)算化簡(jiǎn)即可.【詳解】由是等比數(shù)列可得,是等差數(shù)列可得,所以,故選:A9、C【解析】求出樣本中心點(diǎn)的坐標(biāo),代入回歸直線方程,求出的值,再將代入回歸方程即可得解.【詳解】由表格中的數(shù)據(jù)可得,,將樣本中心點(diǎn)的坐標(biāo)代入回歸直線方程可得,解得,所以,回歸直線方程為,故當(dāng)時(shí),.故選:C.10、B【解析】利用古典概型的概率求解.【詳解】解:點(diǎn)從點(diǎn)出發(fā),每次向右或向下跳一個(gè)單位長(zhǎng)度,跳3次,則樣本空間{(右,右,右),(右,右,下),(右,下,右),(下,右,右),(右,下,下),(下,右,下),(下,下,右),(下,下,下)},記“3次跳動(dòng)后,恰好是沿著饕餮紋的路線到達(dá)點(diǎn)B”為事件,則{(下,下,右)},由古典概型的概率公式可知故選:B11、A【解析】由雙曲線方程求出,再根據(jù)點(diǎn)在雙曲線的兩支之間,結(jié)合可求得答案【詳解】由,得,則,所以左焦點(diǎn)為,右焦點(diǎn),則由雙曲線的定義得,因?yàn)辄c(diǎn)在雙曲線的兩支之間,所以,所以,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)取等號(hào),所以的最小值為9,故選:A12、C【解析】用檢驗(yàn)法,由通項(xiàng)公式驗(yàn)證是否符合數(shù)列各項(xiàng),結(jié)合排除法可得【詳解】第一項(xiàng)為正數(shù),BD中求出第一項(xiàng)均為負(fù)數(shù),排除,而AC均滿足,A中,,排除A,C中滿足,,,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】由題可求函數(shù)的導(dǎo)數(shù),再利用導(dǎo)數(shù)的幾何意義即求.【詳解】∵,∴,,又函數(shù)在x=1處的切線與直線y=kx平行,∴.故答案為:2.14、7【解析】根據(jù)給定條件求出圓C的圓心C到直線l的距離即可計(jì)算作答.【詳解】圓的圓心,半徑,點(diǎn)C到直線的距離,所以圓C上點(diǎn)P到直線l距離的最大值為.故答案為:715、【解析】本題著重考查等比中項(xiàng)的性質(zhì),以及橢圓的離心率等幾何性質(zhì),同時(shí)考查了函數(shù)與方程,轉(zhuǎn)化與化歸思想.利用橢圓及等比數(shù)列的性質(zhì)解題.由橢圓的性質(zhì)可知:,,.又已知,,成等比數(shù)列,故,即,則.故.即橢圓的離心率為.【點(diǎn)評(píng)】求雙曲線的離心率一般是通過已知條件建立有關(guān)的方程,然后化為有關(guān)的齊次式方程,進(jìn)而轉(zhuǎn)化為只含有離心率的方程,從而求解方程即可.體現(xiàn)考綱中要求掌握橢圓的基本性質(zhì).來年需要注意橢圓的長(zhǎng)軸,短軸長(zhǎng)及其標(biāo)準(zhǔn)方程的求解等.16、【解析】利用點(diǎn)差法可求得的值,利用離心率公式的值.【詳解】設(shè)點(diǎn)、,則,由已知可得,由題意可得,將兩個(gè)等式相減得,所以,,因此,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由正弦定理得,再由范圍可得答案;(2)由余弦定理和基本不等式可得,再由面積公式可得答案.【小問1詳解】∵,由正弦定理得,又,所以,又,則;【小問2詳解】由余弦定理得,即,所以,當(dāng)且僅當(dāng),取“=”,所以面積的最大值為18、(1)(2)【解析】(1)直接利用兩點(diǎn)式寫出直線的方程;(2)先求出直線的斜率,由點(diǎn)斜式寫出直線的方程.【小問1詳解】直線經(jīng)過,兩點(diǎn),由兩點(diǎn)式得直線的方程為.【小問2詳解】與直線垂直直線的斜率為由點(diǎn)斜式得直線的方程為.19、(1)(2)【解析】(1)由題意得出的值后寫橢圓方程(2)待定系數(shù)法設(shè)方程,由題意列方程求解【小問1詳解】的短軸頂點(diǎn)為(0,-3),(0,3),∴所求橢圓的焦點(diǎn)在y軸上,且c=3又,∴a=6.∴∴所求橢圓方程為【小問2詳解】根據(jù)雙曲線漸近線方程為,可設(shè)雙曲線的方程,把代入得m=1.所以雙曲線的方程為20、(1);(2)是定值,理由見解析.【解析】(1)由題意有,點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形有,即可寫出橢圓方程;(2)直線與橢圓交于兩點(diǎn),聯(lián)立方程結(jié)合韋達(dá)定理即有,已知應(yīng)用點(diǎn)線距離公式、三角形面積公式即可說明的面積是否為定值;【詳解】(1)橢圓離心率為,即,∵點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形,∴,綜上有:,,故橢圓方程為,(2)由直線與橢圓交于兩點(diǎn),聯(lián)立方程:,整理得,設(shè),則,,,,原點(diǎn)到的距離,為定值;【點(diǎn)睛】本題考查了由離心率求橢圓方程,根據(jù)直線與橢圓的相交關(guān)系證明交點(diǎn)與原點(diǎn)構(gòu)成的三角形面積是否為定值的問題.21、(1)(2)【解析】(1)由,且成等比數(shù)列列式求解出和,然后寫出;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年現(xiàn)代農(nóng)業(yè)園土地流轉(zhuǎn)承包合同3篇
- 藝術(shù)活動(dòng)特色課程設(shè)計(jì)
- 汽車租賃管理課程設(shè)計(jì)
- 湘繡美術(shù)課程設(shè)計(jì)
- 藝術(shù)課創(chuàng)意游戲課程設(shè)計(jì)
- 草藥烘焙課程設(shè)計(jì)
- 紙箱印刷工藝課程設(shè)計(jì)
- 職業(yè)主題運(yùn)動(dòng)課程設(shè)計(jì)
- 育子課程設(shè)計(jì)
- 糕點(diǎn)烘焙培訓(xùn)課程設(shè)計(jì)
- TSG 51-2023 起重機(jī)械安全技術(shù)規(guī)程 含2024年第1號(hào)修改單
- 《正態(tài)分布理論及其應(yīng)用研究》4200字(論文)
- GB/T 45086.1-2024車載定位系統(tǒng)技術(shù)要求及試驗(yàn)方法第1部分:衛(wèi)星定位
- 浙江省杭州市錢塘區(qū)2023-2024學(xué)年四年級(jí)上學(xué)期英語期末試卷
- 1古詩(shī)文理解性默寫(教師卷)
- 2024-2025學(xué)年六上科學(xué)期末綜合檢測(cè)卷(含答案)
- 電力電子技術(shù)(廣東工業(yè)大學(xué))智慧樹知到期末考試答案章節(jié)答案2024年廣東工業(yè)大學(xué)
- 2024年中國(guó)移動(dòng)甘肅公司招聘筆試參考題庫(kù)含答案解析
- 反面典型案例剖析材料范文(通用6篇)
- NB∕T 32004-2018 光伏并網(wǎng)逆變器技術(shù)規(guī)范
- 股權(quán)投資郵箱
評(píng)論
0/150
提交評(píng)論