內(nèi)蒙古赤峰市、呼和浩特市校際聯(lián)考2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
內(nèi)蒙古赤峰市、呼和浩特市校際聯(lián)考2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
內(nèi)蒙古赤峰市、呼和浩特市校際聯(lián)考2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
內(nèi)蒙古赤峰市、呼和浩特市校際聯(lián)考2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
內(nèi)蒙古赤峰市、呼和浩特市校際聯(lián)考2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

內(nèi)蒙古赤峰市、呼和浩特市校際聯(lián)考2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列的首項為,且,若,則的取值范圍是()A. B.C. D.2.已知是拋物線的焦點,為拋物線上的動點,且的坐標(biāo)為,則的最小值是A. B.C. D.3.設(shè)集合,,則()A. B.C. D.4.在平面直角坐標(biāo)系中,拋物線上點到焦點的距離為3,則焦點到準(zhǔn)線的距離為()A. B.C.1 D.5.拋物線的焦點坐標(biāo)為A. B.C. D.6.設(shè)拋物線C:的焦點為,準(zhǔn)線為.是拋物線C上異于的一點,過作于,則線段的垂直平分線()A.經(jīng)過點 B.經(jīng)過點C.平行于直線 D.垂直于直線7.若等差數(shù)列的前項和為,首項,,,則滿足成立的最大正整數(shù)是()A. B.C. D.8.圓的圓心和半徑分別是()A. B.C. D.9.已知平面向量,且,向量滿足,則的最小值為()A. B.C. D.10.在棱長為1的正方體中,是線段上一個動點,則下列結(jié)論正確的有()A.不存在點使得異面直線與所成角為90°B.存在點使得異面直線與所成角為45°C.存在點使得二面角的平面角為45°D.當(dāng)時,平面截正方體所得的截面面積為11.已知拋物線,過其焦點且斜率為1的直線交拋物線于A,B兩點,若線段AB的中點的橫坐標(biāo)為3,則該拋物線的準(zhǔn)線方程為()A. B.C. D.12.點到直線的距離為A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.拋物線()上的一點到其焦點F的距離______.14.已知直線與平行,則___________.15.定義方程的實數(shù)根叫做函數(shù)的“新駐點”.(1)設(shè),則在上的“新駐點”為___________;(2)如果函數(shù)與的“新駐點”分別為、,那么和的大小關(guān)系是___________.16.在等差數(shù)列中,,公差,則_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)橢圓的左、右焦點分別為,短軸的一個端點到的距離為,且橢圓過點過且不與兩坐標(biāo)軸平行的直線交橢圓于兩點,點與點關(guān)于軸對稱.(1)求橢圓的方程(2)當(dāng)直線的斜率為1時,求的面積;(3)若點,求證:三點共線.18.(12分)如圖,在正四棱柱中,是上的點,滿足為等邊三角形.(1)求證:平面;(2)求點到平面的距離.19.(12分)等差數(shù)列的前n項和為,已知(1)求的通項公式;(2)若,求n的最小值20.(12分)如圖,在四棱錐P-ABCD中,底面四邊形ABCD為直角梯形,,,,O為BD的中點,,(1)證明:平面ABCD;(2)求平面PAD與平面PBC所成銳二面角的余弦值21.(12分)已知圓C的圓心在y軸上,且過點,(1)求圓C的方程;(2)已知圓C上存在點M,使得三角形MAB的面積為,求點M的坐標(biāo)22.(10分)如圖,在四棱錐中,平面,四邊形是菱形,,,是的中點(1)求證:;(2)已知二面角的余弦值為,求與平面所成角的正弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由題意,得到,利用疊加法求得,結(jié)合由,轉(zhuǎn)化為恒成立,分,和三種情況討論,即可求解.【詳解】因為,可得,所以,所以,各式相加可得,所以,由,可得恒成立,整理得恒成立,當(dāng)時,,不等式可化為恒成立,所以;當(dāng)時,,不等式可化為恒成立;當(dāng)時,,不等式可化為恒成立,所以,綜上可得,實數(shù)的取值范圍是.故選:C.2、C【解析】由題意可得,拋物線的焦點,準(zhǔn)線方程為過點作垂直于準(zhǔn)線,為垂足,則由拋物線的定義可得,則,為銳角∴當(dāng)最小時,最小,則當(dāng)和拋物線相切時,最小設(shè)切點,由的導(dǎo)數(shù)為,則的斜率為.∴,則.∴,∴故選C點睛:本題主要考查拋物線的定義和幾何性質(zhì),與焦點、準(zhǔn)線有關(guān)的問題一般情況下都與拋物線的定義有關(guān),解決這類問題一定要注意點到焦點的距離與點到準(zhǔn)線的距離的轉(zhuǎn)化,這樣可利用三角形相似,直角三角形中的銳角三角函數(shù)或是平行線段比例關(guān)系可求得距離弦長以及相關(guān)的最值等問題.3、C【解析】根據(jù)集合交集和補集的概念及運算,即可求解.【詳解】由題意,集合,,根據(jù)補集的運算,可得,所以.故選:C.4、D【解析】根據(jù)給定條件求出拋物線C的焦點、準(zhǔn)線,再利用拋物線的定義求出a值計算作答.【詳解】拋物線的焦點,準(zhǔn)線,依題意,由拋物線定義得,解得,所以拋物線焦點到準(zhǔn)線的距離為.故選:D5、D【解析】拋物線的標(biāo)準(zhǔn)方程為,從而可得其焦點坐標(biāo)【詳解】拋物線的標(biāo)準(zhǔn)方程為,故其焦點坐標(biāo)為,故選D.【點睛】本題考查拋物線的性質(zhì),屬基礎(chǔ)題6、A【解析】依據(jù)題意作出焦點在軸上的開口向右的拋物線,根據(jù)垂直平分線的定義和拋物線的定義可知,線段的垂直平分線經(jīng)過點,即可求解.【詳解】如圖所示:因為線段的垂直平分線上的點到的距離相等,又點在拋物線上,根據(jù)定義可知,,所以線段的垂直平分線經(jīng)過點.故選:A.7、B【解析】由等差數(shù)列的,及得數(shù)列是遞減的數(shù)列,因此可確定,然后利用等差數(shù)列的性質(zhì)求前項和,確定和的正負(fù)【詳解】∵,∴和異號,又?jǐn)?shù)列是等差數(shù)列,首項,∴是遞減的數(shù)列,,由,所以,,∴滿足的最大自然數(shù)為4040故選:B【點睛】關(guān)鍵點睛:本題求滿足的最大正整數(shù)的值,關(guān)鍵就是求出,時成立的的值,解題時應(yīng)充分利用等差數(shù)列下標(biāo)和的性質(zhì)求解,屬于中檔題.8、B【解析】將圓的方程化成標(biāo)準(zhǔn)方程,即可求解.【詳解】解:.故選:B.9、B【解析】由題設(shè)可得,又,易知,,將問題轉(zhuǎn)化為平面點線距離關(guān)系:向量的終點為圓心,1為半徑的圓上的點到向量所在射線的距離最短,即可求的最小值.【詳解】解:∵,而,∴,又,即,又,,∴,若,則,∴在以為圓心,1為半徑的圓上,若,則,∴問題轉(zhuǎn)化為求在圓上的哪一點時,使最小,又,∴當(dāng)且僅當(dāng)三點共線且時,最小為.故選:B.【點睛】關(guān)鍵點點睛:由已知確定,,構(gòu)成等邊三角形,即可將問題轉(zhuǎn)化為圓上動點到射線的距離最短問題.10、D【解析】由正方體的性質(zhì)可將異面直線與所成的角可轉(zhuǎn)化為直線與所成角,而當(dāng)為的中點時,可得,可判斷A;與或重合時,直線與所成的角最小可判斷B;當(dāng)與重合時,二面角的平面角最小,通過計算可判斷C;過作,交于,交于點,由題意可得四邊形即為平面截正方體所得的截面,且四邊形是等腰梯形,然后利用已知數(shù)據(jù)計算即可判斷D.【詳解】異面直線與所成的角可轉(zhuǎn)化為直線與所成角,當(dāng)為中點時,,此時與所成的角為90°,所以A錯誤;當(dāng)與或重合時,直線與所成角最小,為60°,所以B錯誤;當(dāng)與重合時,二面角的平面角最小,,所以,所以C錯誤;對于D,過作,交于,交于點,因為,所以、分別是、的中點,又,所以,四邊形即為平面截正方體所得的截面,因為,且,所以四邊形是等腰梯形,作交于點,所以,,所以梯形的面積為,所以D正確.故選:D.11、B【解析】設(shè),進而根據(jù)題意,結(jié)合中點弦的問題得,進而再求解準(zhǔn)線方程即可.【詳解】解:根據(jù)題意,設(shè),所以①,②,所以,①②得:,即,因為直線AB的斜率為1,線段AB的中點的橫坐標(biāo)為3,所以,即,所以拋物線,準(zhǔn)線方程為.故選:B12、B【解析】直接利用點到直線的距離公式得到答案.【詳解】,答案為B【點睛】本題考查了點到直線的距離公式,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將點坐標(biāo)代入方程中可求得拋物線的方程,從而可得到焦點坐標(biāo),進而可求出【詳解】解:為拋物線上一點,即有,,拋物線的方程為,焦點為,即有.故答案為:5.14、【解析】根據(jù)平行可得斜率相等列出關(guān)于參數(shù)的方程,解方程進行檢驗即可求解.【詳解】因為直線與平行,所以,解得或,又因為時,,,所以直線,重合故舍去,而,,,所以兩直線平行.所以,故答案為:3.【點睛】(1)當(dāng)直線的方程中存在字母參數(shù)時,不僅要考慮到斜率存在的一般情況,也要考慮到斜率不存在的特殊情況.同時還要注意x,y的系數(shù)不能同時為零這一隱含條件(2)在判斷兩直線平行、垂直時,也可直接利用直線方程的系數(shù)間的關(guān)系得出結(jié)論15、①.②.【解析】(1)根據(jù)“新駐點”的定義求得,結(jié)合可得出結(jié)果;(2)求出的值,利用零點存在定理判斷所在的區(qū)間,進而可得出與的大小關(guān)系.詳解】(1),,根據(jù)“新駐點”的定義得,即,可得,,解得,所以,函數(shù)在上的“新駐點”為;(2),則,根據(jù)“新駐點”的定義得,即.,則,由“新駐點”的定義得,即,構(gòu)造函數(shù),則函數(shù)在定義域上為增函數(shù),,,,由零點存在定理可知,,.故答案為:(1);(2).【點睛】本題考查導(dǎo)數(shù)的計算,是新定義的題型,關(guān)鍵是理解“新駐點”的定義.16、15【解析】由等差數(shù)列通項公式直接可得.【詳解】.故答案為:15三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)證明見解析.【解析】(1)根據(jù)已知求出即得橢圓的方程;(2)聯(lián)立直線和橢圓的方程求出弦長和三角形的高即得解;(3)聯(lián)立直線和橢圓的方程,得到韋達定理,再利用平面向量證明.【小問1詳解】解:由題得,所以橢圓方程為,因為橢圓過點所以,所以所以橢圓的方程為.【小問2詳解】解:由題得,所以直線的方程為即,聯(lián)立直線和橢圓方程得,所以,點到直線的距離為.所以的面積為.【小問3詳解】解:設(shè)直線的方程為,聯(lián)立直線和橢圓的方程得,設(shè),所以,由題得,,所以,所以,所以,又有公共點,所以三點共線.18、(1)證明見解析;(2).【解析】(1)根據(jù)題意證明,,然后根據(jù)線面垂直的判定定理證明問題;(2)結(jié)合(1),進而利用等體積法求得答案.【小問1詳解】由題意,,為等邊三角形,,∵平面ABCD,∴,則,即為中點.連接,∵平面,平面,∴,易得,則,又,于是,即,同理,即,又平面.【小問2詳解】設(shè)M到平面的距離為d,,∴.易得,取BD的中點N,連接,則,所以,,所以,,.即M到平面的距離為1.19、(1)(2)12【解析】(1)設(shè)的公差為d,根據(jù)題意列出方程組,求得的值,即可求解;(2)利用等差數(shù)的求和公式,得到,結(jié)合的單調(diào)性,即可求解.【小問1詳解】解:設(shè)的公差為d,因為,可得,解得,所以,即數(shù)列的通項公式為【小問2詳解】解:由,可得,根據(jù)二次函數(shù)的性質(zhì)且,可得單調(diào)遞增,因為,所以當(dāng)時,,故n的最小值為1220、(1)見解析(2)【解析】(1)連接,利用勾股定理證明,又可證明,根據(jù)線面垂直的判定定理證明即可;(2)建立合適的空間直角坐標(biāo)系,求出所需點的坐標(biāo)和向量的坐標(biāo),然后利用待定系數(shù)法求出平面和平面的法向量,由向量的夾角公式求解即可小問1詳解】證明:如圖,連接,在中,由,可得,因為,,所以,,因為,,,則,故,因為,,,平面,則平面;【小問2詳解】解:由(1)可知,,,兩兩垂直,以點為坐標(biāo)原點,建立空間直角坐標(biāo)系如圖所示,則,0,,,0,,,0,,,2,,,0,,所以,則,,,又,設(shè)平面的法向量為,則,令,則,,故,設(shè)平面的法向量為,因為,所以,令,則,,故,所以,故平面與平面所成銳二面角的余弦值為21、(1);(2)或.【解析】(1)兩點式求AB所在直線的斜率,結(jié)合點坐標(biāo)求AB的垂直平分線,根據(jù)已知確定圓心、半徑即可得圓C的方程;(2)求AB所在直線方程,幾何關(guān)系求弦長,由三角形面積求點線距離,設(shè)M所在直線為,由點線距離公式列方程求參數(shù),進而聯(lián)立直線與圓C求M的坐標(biāo)【小問1詳解】由題意知,AB所在直線的斜率為,又,中點為,所以線段AB的垂直平分線為,即,聯(lián)立,得,半徑,所以圓C的方程為.【小問2詳解】由題意,AB所在直線方程為,即,圓心到直線AB的距離為,故,因為三角形MAB的面積為,則點M到直線AB的距離為,設(shè)點M所在直線方程為,所以,所以或,當(dāng)時,聯(lián)立得:或,當(dāng)時,聯(lián)立,無解;所以或22、(1)證

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論