2025屆上海市寶山區(qū)淞浦中學數(shù)學高二上期末考試模擬試題含解析_第1頁
2025屆上海市寶山區(qū)淞浦中學數(shù)學高二上期末考試模擬試題含解析_第2頁
2025屆上海市寶山區(qū)淞浦中學數(shù)學高二上期末考試模擬試題含解析_第3頁
2025屆上海市寶山區(qū)淞浦中學數(shù)學高二上期末考試模擬試題含解析_第4頁
2025屆上海市寶山區(qū)淞浦中學數(shù)學高二上期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2025屆上海市寶山區(qū)淞浦中學數(shù)學高二上期末考試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設實數(shù)x,y滿足約束條件則的最小值()A.5 B.C. D.82.幾何學史上有一個著名的米勒問題:“設點、是銳角的一邊上的兩點,試在邊上找一點,使得最大的.”如圖,其結(jié)論是:點為過、兩點且和射線相切的圓的切點.根據(jù)以上結(jié)論解決一下問題:在平面直角坐標系中,給定兩點,,點在軸上移動,當取最大值時,點的橫坐標是()A.B.C.或D.或3.在三棱錐中,,D為上的點,且,則()A. B.C. D.4.如圖,和分別是雙曲線的兩個焦點,和是以為圓心,以為半徑的圓與該雙曲線左支的兩個交點,且是等邊三角形,則雙曲線的離心率為()A. B.C. D.5.拋物線的準線方程為,則實數(shù)的值為()A. B.C. D.6.已知橢圓的左、右焦點分別為,,點P是橢圓上一點且的最大值為,則橢圓離心率為()A. B.C. D.7.如圖,奧運五環(huán)由5個奧林匹克環(huán)套接組成,環(huán)從左到右互相套接,上面是藍、黑、紅環(huán),下面是黃,綠環(huán),整個造形為一個底部小的規(guī)則梯形.為迎接北京冬奧會召開,某機構(gòu)定制一批奧運五環(huán)旗,已知該五環(huán)旗的5個奧林匹克環(huán)的內(nèi)圈半徑為1,外圈半徑為1.2,相鄰圓環(huán)圓心水平距離為2.6,兩排圓環(huán)圓心垂直距離為1.1,則相鄰兩個相交的圓的圓心之間的距離為()A. B.2.8C. D.2.98.已知數(shù)列滿足,則滿足的的最大取值為()A.6 B.7C.8 D.99.已知函數(shù)的導函數(shù)為,若的圖象如圖所示,則函數(shù)的圖象可能是()A. B.C. D.10.已知等差數(shù)列{an}的前n項和為Sn,且S7=28,則a4=()A.4 B.7C.8 D.1411.若數(shù)列為等比數(shù)列,且,,則()A.8 B.16C.32 D.6412.數(shù)學中的數(shù)形結(jié)合也可以組成世間萬物的絢麗畫面,-些優(yōu)美的曲線是數(shù)學形象美、對稱美、和諧美的產(chǎn)物.曲線C:為四葉玫瑰線.①方程(xy<0)表示的曲線在第二和第四象限;②曲線C上任一點到坐標原點0的距離都不超過2;③曲線C構(gòu)成的四葉玫瑰線面積大于4π;④曲線C上有5個整點(橫、縱坐標均為整數(shù)的點).則上述結(jié)論中正確的個數(shù)是()A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.隨機變量X的取值為0,1,2,若,,則_________14.用秦九韶算法求函數(shù),當時的值時,___________15.某校為了解學生學習的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進行問卷調(diào)查.已知高一被抽取的人數(shù)為,那么高二被抽取的人數(shù)為__.16.等軸(實軸長與虛軸長相等)雙曲線的離心率_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在數(shù)列中,,,數(shù)列滿足(1)求證:數(shù)列是等比數(shù)列,并求出數(shù)列的通項公式;(2)數(shù)列前項和為,且滿足,求的表達式;(3)令,對于大于的正整數(shù)、(其中),若、、三個數(shù)經(jīng)適當排序后能構(gòu)成等差數(shù)列,求符合條件的數(shù)組.18.(12分)已知三棱柱中,,,平面ABC,,E為AB中點,D為上一點(1)求證:;(2)當D為中點時,求平面ADC與平面所成角的正弦值19.(12分)已知兩動圓:和:,把它們的公共點的軌跡記為曲線,若曲線與軸的正半軸的交點為,取曲線上的相異兩點、滿足:且點與點均不重合.(1)求曲線的方程;(2)證明直線恒經(jīng)過一定點,并求此定點的坐標;20.(12分)在①,;②,;③,.這三個條件中任選一個,補充在下面問題中.問題:已知數(shù)列的前n項和為,,___________.(1)求數(shù)列的通項公式(2)已知,求數(shù)列的前n項和.21.(12分)已知數(shù)列滿足,,設.(1)證明數(shù)列為等比數(shù)列,并求通項公式;(2)設,求數(shù)列的前項和.22.(10分)已知橢圓的焦距為,離心率為.(1)求橢圓的方程;(2)若斜率為1的直線與橢圓交于不同的兩點,,求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】做出,滿足約束條件的可行域,結(jié)合圖形可得答案.【詳解】做出,滿足約束條件可行域如圖,化為,平移直線,當直線經(jīng)過點時有最小值,由得,所以的最小值為.故選:B.2、A【解析】根據(jù)米勒問題的結(jié)論,點應該為過點、的圓與軸的切點,設圓心的坐標為,寫出圓的方程,并將點、的坐標代入可求出點的橫坐標.【詳解】解:設圓心的坐標為,則圓的方程為,將點、的坐標代入圓的方程得,解得或(舍去),因此,點的橫坐標為,故選:A.3、B【解析】根據(jù)幾何關系以及空間向量的線性運算即可解出【詳解】因為,所以,即故選:B4、D【解析】解:,設F1F2=2c,∵△F2AB是等邊三角形,∴∠AF1F2==30°,∴AF1=c,AF2=c,∴a=(c-c)2,e=2c(c-c)=+1,故選D5、B【解析】由題得,解方程即得解.【詳解】解:拋物線的準線方程為,所以.故選:B6、A【解析】根據(jù)橢圓的定義可得,從而得到,則,其中,再根據(jù)對勾函數(shù)的性質(zhì)求出,即可得到方程,從求出橢圓的離心率;【詳解】解:依題意,所以,又,所以,因為在上單調(diào)遞減,所以當時函數(shù)取得最大值,即,即所以,即,所以,解得或(舍去)故選:A7、C【解析】根據(jù)題意作出輔助線直接求解即可.【詳解】如圖所示,由題意可知,在中,取的中點,連接,所以,,又因為,所以,所以即相鄰兩個相交的圓的圓心之間的距離為.故選:C8、B【解析】首先地推公式變形,得,,求得數(shù)列的通項公式后,再解不等式.【詳解】因為,兩邊取倒數(shù),得,整理為:,,所以數(shù)列是首項為1,公差為4的等差數(shù)列,,,因為,即,得,解得:,,所以的最大值是7.故選:B9、D【解析】根據(jù)導函數(shù)大于,原函數(shù)單調(diào)遞增;導函數(shù)小于,原函數(shù)單調(diào)遞減;即可得出正確答案.【詳解】由導函數(shù)得圖象可得:時,,所以單調(diào)遞減,排除選項A、B,當時,先正后負,所以在先增后減,因選項C是先減后增再減,故排除選項C,故選:D.10、A【解析】由等差數(shù)列的性質(zhì)可知,再代入等差數(shù)列的前項和公式求解.【詳解】數(shù)列{an}是等差數(shù)列,,那么,所以.故選:A.【點睛】本題考查等差數(shù)列的性質(zhì)和前項和,屬于基礎題型.11、B【解析】設等比數(shù)列的公比為,根據(jù)等比數(shù)列的通項公式得到,即可求出,再根據(jù)計算可得;【詳解】解:設等比數(shù)列公比為,因為、,所以,所以;故選:B12、B【解析】對于①,由判斷,對于②,利用基本不等式可判斷,對于③,以為圓心,2為半徑的圓的面積與曲線圍成的面積進行比較即可,對于④,將和聯(lián)立,求解出兩曲線的切點,從而可判斷【詳解】對于①,由,得異號,方程(xy<0)關于原點及y=x對稱,所以方程(xy<0)表示的曲線在第二和第四象限,所以①正確,對于②,因為,所以,所以,所以,所以由曲線的對稱性可知曲線C上任一點到坐標原點0的距離都不超過2,所以②正確,對于③,由②可知曲線C上到原點的距離不超過2,而以為圓心,2為半徑的圓的面積為,所以曲線C構(gòu)成的四葉玫瑰線面積小于4π,所以③錯誤,對于④,將和聯(lián)立,解得,所以可得圓與曲線C相切于點,,,,而點(1,1)不滿足曲線方程,所以曲線在第一象限不經(jīng)過任何整數(shù)點,由曲線的對稱性可知曲線在其它象限也不經(jīng)過任何整數(shù)點,所以曲線C上只有1個整點(0,0),所以④錯誤,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、##0.4【解析】設出概率,利用期望求出相應的概率,進而利用求方差公式進行求解.【詳解】設,則,從而,解得:,所以故答案為:14、0【解析】利用秦九韶算法的定義計算即可.【詳解】故答案為:015、【解析】利用分層抽樣可求得的值,再利用分層抽樣可求得高二被抽取的人數(shù).【詳解】高一年級抽取的人數(shù)為:人,則,則高二被抽取的人數(shù),故答案為:.16、【解析】由題意可知,,由,化簡可求離心率.【詳解】由題意可知,,兩邊同時平方,得,即,,所以離心率,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,;(2);(3).【解析】(1)由已知等式變形可得,利用等比數(shù)列的定義可證得結(jié)論成立,確定等比數(shù)列的首項和公比,可求得數(shù)列的通項公式;(2)求得,然后分、兩種情況討論,結(jié)合裂項相消法可得出的表達式;(3)求得,分、、三種情況討論,利用奇數(shù)與偶數(shù)的性質(zhì)以及整數(shù)的性質(zhì)可求得、的值,綜合可得出結(jié)論.【小問1詳解】解:由可得,,則,,以此類推可知,對任意的,,則,故數(shù)列為等比數(shù)列,且該數(shù)列的首項為,公比為,故,可得.【小問2詳解】解:由(1)知,所以,所以,當n=1時,,當時,.因為滿足,所以.【小問3詳解】解:,、、這三項經(jīng)適當排序后能構(gòu)成等差數(shù)列,①若,則,所以,,又,所以,,則;②若,則,則,左邊為偶數(shù),右邊為奇數(shù),所以,②不成立;③若,同②可知③也不成立綜合①②③得,18、(1)證明見解析;(2).【解析】(1)利用線面垂直的性質(zhì)定理及線面垂直的判定定理即證;(2)利用坐標法即求.【小問1詳解】∵,E為AB中點,∴,∵平面ABC,平面ABC,∴,又,,∴平面,平面,∴;【小問2詳解】以C點為坐標原點,CA,CB,分別為x,y,z軸建立空間直角坐標系,不妨設,則平面的法向量為,設平面ADC法向量為,則,∴,即,令,則∴平面ADC與平面所成角的余弦值為,所以平面ADC與平面所成角的正弦值.19、(1);(2)證明見解析,.【解析】(1)設兩動圓的公共點為,則有,運用橢圓的定義,即可得到,,,進而得到的軌跡方程;(2),設,,,,設出直線方程,聯(lián)立方程組,利用韋達定理法及向量的數(shù)量積的坐標表示,即可得到定點.【小問1詳解】設兩動圓的公共點為,則有由橢圓的定義可知的軌跡為橢圓,設方程為,則,,所以曲線的方程是:【小問2詳解】由題意可知:,且直線斜率存在,設,,設直線:,聯(lián)立方程組,可得,,,因為,所以有,把代入整理化簡得,或舍,因為點與點均不重合,所以直線恒過定點20、(1)(2)【解析】(1)選①,利用化已知等式為,得是等差數(shù)列,公差,求出其通項公式后,再由求得通項公式,注意;選②,由可變形已知條件得是等差數(shù)列,從而求得通項公式;選③,已知式兩邊同除以,得出,以下同選①;(2)由錯位相減法求和【小問1詳解】選①,由得,,所以,即,所以是等差數(shù)列,公差,又,,,所以,,時,也適合所以;選②,由得,所以等差數(shù)列,公差為,又,所以;選③,由得,以下同選①,【小問2詳解】由(1),,,兩式相減得,所以21、(1)證明見解析,;(2).【解析】(1)計算可得出,根據(jù)等比數(shù)列的定義可得出數(shù)列為等比數(shù)列,確定該數(shù)列的首項和公比,可求得數(shù)列的通項公式,進而可求得數(shù)列的通項公式;(2)求得,利用錯位相減法可求得.【小問1詳解】證明:對任意的,,則,則,因為,則,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論