2025屆湖南省洞口縣九中數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第1頁
2025屆湖南省洞口縣九中數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第2頁
2025屆湖南省洞口縣九中數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第3頁
2025屆湖南省洞口縣九中數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第4頁
2025屆湖南省洞口縣九中數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆湖南省洞口縣九中數(shù)學(xué)高二上期末聯(lián)考模擬試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,角、、所對的邊分別是、、.已知,,且滿足,則的取值范圍為()A. B.C. D.2.直線(t為參數(shù))被圓所截得的弦長為()A. B.C. D.3.如圖,點(diǎn)A的坐標(biāo)為,點(diǎn)C的坐標(biāo)為,函數(shù),若在矩形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分的概率等于()A. B.C. D.4.過點(diǎn)且與原點(diǎn)距離最大的直線方程是()A. B.C. D.5.已知雙曲線的焦點(diǎn)為,,其漸近線上橫坐標(biāo)為的點(diǎn)滿足,則()A. B.C.2 D.46.已知函數(shù),那么“”是“在上為增函數(shù)”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件7.據(jù)記載,歐拉公式是由瑞士著名數(shù)學(xué)家歐拉發(fā)現(xiàn)的,該公式被譽(yù)為“數(shù)學(xué)中的天橋”特別是當(dāng)時,得到一個令人著迷的優(yōu)美恒等式,將數(shù)學(xué)中五個重要的數(shù)(自然對數(shù)的底,圓周率,虛數(shù)單位,自然數(shù)的單位和零元)聯(lián)系到了一起,有些數(shù)學(xué)家評價它是“最完美的數(shù)學(xué)公式”.根據(jù)歐拉公式,復(fù)數(shù)的虛部()A. B.C. D.8.已知點(diǎn)A、是拋物線:上的兩點(diǎn),且線段過拋物線的焦點(diǎn),若的中點(diǎn)到軸的距離為3,則()A.3 B.4C.6 D.89.若,在直線l上,則直線l一個方向向量為()A. B.C. D.10.圓的圓心坐標(biāo)與半徑分別是()A. B.C. D.11.已知是空間的一個基底,若,,若,則()A. B.C.3 D.12.不等式的解集為()A.或 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)F為拋物線C:的焦點(diǎn),過F且傾斜角為30°的直線交C于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),則的面積為______.14.如圖所示,在直二面角D-AB-E中,四邊形ABCD是邊長為2的正方形,△AEB是等腰直角三角形,其中,則點(diǎn)D到平面ACE的距離為________15.若函數(shù)在區(qū)間上單調(diào)遞減,則實(shí)數(shù)的取值范圍是________;16.已知圓,直線與圓C交于A,B兩點(diǎn),且,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,,,為邊上一點(diǎn),且(1)求;(2)若,求18.(12分)已知命題:“曲線表示焦點(diǎn)在軸上的橢圓”,命題:“曲線表示雙曲線”.(1)若是真命題,求實(shí)數(shù)的取值范圍;(2)若是的必要不充分條件,求實(shí)數(shù)的取值范圍.19.(12分)已知數(shù)列是等差數(shù)列,為其前n項(xiàng)和,,(1)求的通項(xiàng)公式;(2)若,求證:為等比數(shù)列20.(12分)已知橢圓C:()過點(diǎn),且離心率為(1)求橢圓C的方程;(2)過點(diǎn)()的直線l(不與x軸重合)與橢圓C交于A,B兩點(diǎn),點(diǎn)C與點(diǎn)B關(guān)于x軸對稱,直線AC與x軸交于點(diǎn)Q,試問是否為定值?若是,請求出該定值,若不是,請說明理由21.(12分)如圖,是平行四邊形,已知,,平面平面.(1)證明:;(2)若,求平面與平面所成二面角的平面角的余弦值22.(10分)設(shè)二次函數(shù).(1)若是函數(shù)的兩個零點(diǎn),且最小值為.①求證:;②當(dāng)且僅當(dāng)a在什么范圍內(nèi)時,函數(shù)在區(qū)間上存在最小值?(2)若任意實(shí)數(shù)t,在閉區(qū)間上總存在兩實(shí)數(shù)m,n,使得成立,求實(shí)數(shù)a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】利用正弦定理邊角互化思想化簡得出,利用余弦定理化簡得出,結(jié)合,根據(jù)函數(shù)在上的單調(diào)性可求得的取值范圍.【詳解】且,所以,由正弦定理得,即,,,所以,,則,由余弦定理得,,則,由于雙勾函數(shù)在上單調(diào)遞增,則,即,所以,.因此,的取值范圍為.故選:D.【點(diǎn)睛】本題考查三角形內(nèi)角余弦值的取值范圍的求解,考查了余弦定理以及正弦定理邊角互化思想的應(yīng)用,考查計算能力,屬于中等題.2、C【解析】求得直線普通方程以及圓的直角坐標(biāo)方程,利用弦長公式即可求得結(jié)果.【詳解】因?yàn)橹本€的參數(shù)方程為:(t為參數(shù)),故其普通方程為,又,根據(jù),故可得,其表示圓心為,半徑的圓,則圓心到直線的距離,則該直線截圓所得弦長為.故選:C.3、A【解析】分別由矩形面積公式與微積分幾何意義計算陰影部分和矩形部分的面積,最后由幾何概型概率計算公式計算即可.【詳解】由已知,矩形的面積為4,陰影部分的面積為,由幾何概型公式可得此點(diǎn)取自陰影部分的概率等于,故選:A4、A【解析】過點(diǎn)且與原點(diǎn)O距離最遠(yuǎn)的直線垂直于直線,再由點(diǎn)斜式求解即可【詳解】過點(diǎn)且與原點(diǎn)O距離最遠(yuǎn)的直垂直于直線,,∴過點(diǎn)且與原點(diǎn)O距離最遠(yuǎn)的直線的斜率為,∴過點(diǎn)且與原點(diǎn)O距離最遠(yuǎn)的直線方程為:,即.故選:A5、B【解析】由題意可設(shè),則,再由,可得,從而可求出的值【詳解】解:雙曲線的漸近線方程為,故設(shè),設(shè),則,因?yàn)?,所以,即,所以,因?yàn)椋?,因?yàn)椋?,故選:B6、A【解析】對函數(shù)進(jìn)行求導(dǎo)得,進(jìn)而得時,,在上為增函數(shù),然后判斷充分性和必要性即可.【詳解】解:因?yàn)榈亩x域是,所以,當(dāng)時,,在上為增函數(shù).所以在上為增函數(shù),是充分條件;反之,在上為增函數(shù)或,不是必要條件.故選:A.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,屬于中檔題.7、D【解析】由歐拉公式的定義和復(fù)數(shù)的概念進(jìn)行求解.【詳解】由題意,得,則復(fù)數(shù)的虛部為.故選:D.8、D【解析】直接根據(jù)拋物線焦點(diǎn)弦長公式以及中點(diǎn)坐標(biāo)公式求結(jié)果【詳解】設(shè),,則的中點(diǎn)到軸的距離為,則故選:D9、C【解析】利用直線的方向向量的定義直接求解.【詳解】因?yàn)?,在直線l上,所以直線l的一個方向向量為.故選:C.10、C【解析】將圓的一般方程化為標(biāo)準(zhǔn)方程,即可得答案.【詳解】由題可知,圓的標(biāo)準(zhǔn)方程為,所以圓心為,半徑為3,故選.11、C【解析】由,可得存在實(shí)數(shù),使,然后將代入化簡可求得結(jié)果【詳解】,,因,所以存在實(shí)數(shù),使,所以,所以,所以,得,,所以,故選:C12、A【解析】根據(jù)一元二次不等式的解法可得答案.【詳解】由不等式可得或不等式的解集為或故選:A二、填空題:本題共4小題,每小題5分,共20分。13、##2.25##【解析】求出直線的方程,與拋物線方程聯(lián)立后得到兩根之和,結(jié)合焦點(diǎn)弦弦長公式求出,用點(diǎn)到直線距離公式求高,進(jìn)而求出三角形面積.【詳解】易知拋物線中,焦點(diǎn),直線的斜率,故直線的方程為,代人拋物線方程,整理得.設(shè),則,由拋物線的定義可得弦長,原點(diǎn)到直線的距離,所以面積.故答案為:14、【解析】建立合適空間直角坐標(biāo)系,分別表示出點(diǎn)的坐標(biāo),然后求解出平面的一個法向量,利用公式求解出點(diǎn)到平面的距離.【詳解】以AB的中點(diǎn)O為坐標(biāo)原點(diǎn),分別以O(shè)E,OB所在的直線為x軸、y軸,過垂直于平面的方向?yàn)檩S,建立如下圖所示的空間直角坐標(biāo)系,則,,設(shè)平面ACE的法向量,則,即,令,∴故點(diǎn)D到平面ACE的距離.故答案:.15、【解析】函數(shù),又函數(shù)在區(qū)間上單調(diào)遞減∴在區(qū)間上恒成立即,解得:,當(dāng)時,經(jīng)檢驗(yàn)適合題意故答案為【點(diǎn)睛】f(x)為增函數(shù)的充要條件是對任意的x∈(a,b)都有f′(x)≥0且在(a,b)內(nèi)的任一非空子區(qū)間上f′(x)≠0.應(yīng)注意此時式子中的等號不能省略,否則漏解16、-2【解析】將圓的一般方程化為標(biāo)準(zhǔn)方程,結(jié)合垂徑定理和勾股定理表示出圓心到弦的距離,再由點(diǎn)到直線的距離公式表示出圓心到弦的距離,解方程即可求得的值.【詳解】解:將圓的方程化為標(biāo)準(zhǔn)方程可得,圓心為,半徑圓C與直線相交于、兩點(diǎn),且,由垂徑定理和勾股定理得圓心到直線的距離為,由點(diǎn)到直線距離公式得,所以,解得,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)在△中,由余弦定理,即可求.(2)在中,由正弦定理,即可求.【詳解】(1)在△中,,,,由余弦定理得:,∴(2)在中,,,,由正弦定理得:,即,∴18、(1);(2).【解析】(1)根據(jù)方程為焦點(diǎn)在軸上的橢圓的條件列不等式組,解不等式組求得的取值范圍.(2)求得為真命題時的取值范圍,結(jié)合是的必要不充分條件列不等式組,解不等式組求得的取值范圍.【詳解】(1)若是真命題,所以,解得,所以的取值范圍是.(2)由(1)得,是真命題時,的取值范圍是,為真命題時,,所以的取值范圍是因?yàn)槭堑谋匾怀浞謼l件,所以,所以,等號不同時取得,所以【點(diǎn)睛】本小題主要考查橢圓、雙曲線,考查必要不充分條件求參數(shù).19、(1)(2)證明見解析【解析】(1)由已知條件列出關(guān)于的方程組,解方程組求出,從而可求出的通項(xiàng)公式,(2)由(1)可得,然后利用等比數(shù)列的定義證明即可【小問1詳解】設(shè)數(shù)列的公差為,則由,,得,解得,所以【小問2詳解】證明:由(1)得,所以,()所以數(shù)列是以9為公比,27為首項(xiàng)的等比數(shù)列20、(1)(2)為定值【解析】(1)由題意可得解方程組求出,從而可得橢圓方程,(2)設(shè)直線AB:,,代入橢圓方程,消去,利用根與系數(shù)關(guān)系,再表示出直線AC的方程,從而可求出點(diǎn)Q的坐標(biāo),從而可表示出,然后化簡可得結(jié)論【小問1詳解】由題意得解得故橢圓C的方程為;【小問2詳解】設(shè)直線AB:,,聯(lián)立消去y得,設(shè),,得,,因?yàn)辄c(diǎn)C與點(diǎn)B關(guān)于x軸對稱,所以,所以直線AC的斜率為,直線AC的方程,令,解得可得,所以,因?yàn)?,所以,所以為定值【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查橢圓方程的求法,考查直線與橢圓的位置關(guān)系,解題的關(guān)鍵是將直線AB的方程代入橢圓方程中化簡,利用根與系數(shù)關(guān)系,結(jié)合已知條件表示出直線AC的方程,從而可求出點(diǎn)Q的坐標(biāo),考查計算能力,屬于中檔題21、(1)見解析;(2).【解析】(1)推導(dǎo)出,取BC的中點(diǎn)F,連結(jié)EF,可推出,從而平面,進(jìn)而,由此得到平面,從而;(2)以為坐標(biāo)原點(diǎn),,所在直線分別為,軸,以過點(diǎn)且與平行的直線為軸,建立空間直角坐標(biāo)系,利用向量法能求出平面與平面所成二面角的余弦值【詳解】(1)∵是平行四邊形,且∴,故,即取BC的中點(diǎn)F,連結(jié)EF.∵∴又∵平面平面∴平面∵平面∴∵平面∴平面,∵平面∴(2)∵,由(Ⅰ)得以為坐標(biāo)原點(diǎn),所在直線分別為軸,建立空間直角坐標(biāo)系(如圖),則∴設(shè)平面的法向量為,則,即得平面一個法向量為由(1)知平面,所以可設(shè)平面的法向量為設(shè)平面與平面所成二面角的平面角為,則即平面與平面所成二面角的平面角的余弦值為.【點(diǎn)睛】用空間向量求解立體幾何問題的注意點(diǎn)(1)建立坐標(biāo)系時要確保條件具備,即要證明得到兩兩垂直的三條直線,建系后要準(zhǔn)確求得所需點(diǎn)的坐標(biāo)(2)用平面的法向量求二面角的大小時,要注意向量的夾角與二面角大小間的關(guān)系,這點(diǎn)需要通過觀察圖形來判斷二面角是銳角還是鈍角,然后作出正確的結(jié)論22、(1)①證明見解析;②(2)【解析】(1)①根據(jù)二次函數(shù)的性質(zhì)和一元二次方程的求根公式,求得,即可證得;②由①知,區(qū)間,根據(jù)二次函數(shù)的性質(zhì),即可求解.(2)存在兩實(shí)數(shù),使得成立,轉(zhuǎn)化為在區(qū)間上,有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論