黑龍江省賓縣第一中學2025屆高二數(shù)學第一學期期末監(jiān)測試題含解析_第1頁
黑龍江省賓縣第一中學2025屆高二數(shù)學第一學期期末監(jiān)測試題含解析_第2頁
黑龍江省賓縣第一中學2025屆高二數(shù)學第一學期期末監(jiān)測試題含解析_第3頁
黑龍江省賓縣第一中學2025屆高二數(shù)學第一學期期末監(jiān)測試題含解析_第4頁
黑龍江省賓縣第一中學2025屆高二數(shù)學第一學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省賓縣第一中學2025屆高二數(shù)學第一學期期末監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線與圓的位置關系是()A.相交 B.相切C.相離 D.相交或相切2.某社區(qū)醫(yī)院為了了解社區(qū)老人與兒童每月患感冒的人數(shù)y(人)與月平均氣溫x(℃)之間的關系,隨機統(tǒng)計了某4個月的患?。ǜ忻埃┤藬?shù)與當月平均氣溫,其數(shù)據(jù)如下表:月平均氣溫x(℃)171382月患病y(人)24334055由表中數(shù)據(jù)算出線性回歸方程中的,氣象部門預測下個月的平均氣溫約為9℃,據(jù)此估計該社區(qū)下個月老年人與兒童患病人數(shù)約為()A.38 B.40C.46 D.583.已知拋物線的焦點為F,準線為l,點P在拋物線上,直線PF交x軸于Q點,且,則點P到準線l的距離為()A.4 B.5C.6 D.74.若向量則()A. B.3C. D.5.設是雙曲線的一個焦點,,是的兩個頂點,上存在一點,使得與以為直徑的圓相切于,且是線段的中點,則的漸近線方程為A. B.C. D.6.概率論起源于賭博問題.法國著名數(shù)學家布萊爾帕斯卡遇到兩個賭徒向他提出的賭金分配問題:甲、乙兩賭徒約定先贏滿局者,可獲得全部賭金法郎,當甲贏了局,乙贏了局,不再賭下去時,賭金如何分配?假設每局兩人輸贏的概率各占一半,每局輸贏相互獨立,那么賭金分配比較合理的是()A.甲法郎,乙法郎 B.甲法郎,乙法郎C.甲法郎,乙法郎 D.甲法郎,乙法郎7.已知函數(shù),則等于()A.0 B.2C. D.8.的展開式中的系數(shù)是()A.1792 B.C.448 D.9.在中,角A,B,C所對的邊分別為a,b,c,,則的形狀為()A.正三角形 B.等腰直角三角形C.直角三角形 D.等腰三角形10.已知函數(shù)的圖象在點處的切線與直線平行,若數(shù)列的前項和為,則的值為()A. B.C. D.11.如圖,在平行六面體中,AC與BD的交點為M,設,,,則下列向量中與相等的向量是()A. B.C. D.12.設,分別是雙曲線:的左、右焦點,過點作的一條漸近線的垂線,垂足為,,為坐標原點,則雙曲線的離心率為()A. B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線,則圓的圓心C到雙曲線漸近線的距離為______14.設函數(shù),,若存在,成立,則實數(shù)的取值范圍為__________.15.在等比數(shù)列中,,,則公比________.16.歐陽修在《賣油翁》中寫道:(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢孔入,而錢不濕,可見“行行出狀元”,賣油翁的技藝讓人嘆為觀止.若銅錢是直徑為4cm的圓,中間有邊長為1cm的正方形孔,若你隨機地向銅錢上滴一滴油,則油(油滴的大小忽略不計)正好落入孔中的概率是_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前n項和為,,且.(1)求數(shù)列的通項公式;(2)在與之間插入n個數(shù),使這個數(shù)組成一個公差為的等差數(shù)列,求證:.18.(12分)如圖,四棱臺的底面為正方形,面,(1)求證:平面;(2)若平面平面,求直線m與平面所成角的正弦值19.(12分)已知橢圓的離心率為,且其左頂點到右焦點的距離為.(1)求橢圓的方程;(2)設點、在橢圓上,以線段為直徑的圓過原點,試問是否存在定點,使得到直線的距離為定值?若存在,請求出點坐標;若不存在,請說理由.20.(12分)某城市100戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖(1)求直方圖中的值;(2)求月平均用電量的眾數(shù)和中位數(shù)21.(12分)已知為數(shù)列的前項和,且.(1)求的通項公式;(2)若,求的前項和.22.(10分)已知橢圓C的中心在原點,焦點在x軸上,長軸長為4,且點在橢圓上(1)經(jīng)過點M(1,)作一直線交橢圓于AB兩點,若點M為線段AB的中點,求直線的斜率;(2)設橢圓C的上頂點為P,設不經(jīng)過點P的直線與橢圓C交于C,D兩點,且,求證:直線過定點

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由直線恒過定點,且定點圓內(nèi),從而即可判斷直線與圓相交.【詳解】解:因為直線恒過定點,而,所以定點在圓內(nèi),所以直線與圓相交,故選:A.2、B【解析】由表格數(shù)據(jù)求樣本中心,根據(jù)線性回歸方程過樣本中心點,將點代入方程求參數(shù),寫出回歸方程,進而估計下個月老年人與兒童患病人數(shù).【詳解】由表格得為,由回歸方程中的,∴,解得,即,當時,.故選:B.3、C【解析】根據(jù)題干條件得到相似,進而得到,求出點P到準線l的距離.【詳解】由題意得:,準線方程為,因為,所以,故點P到準線l的距離為.故選:C4、D【解析】先求得,然后根據(jù)空間向量模的坐標運算求得【詳解】由于向量,,所以.故故選:D5、C【解析】根據(jù)圖形的幾何特性轉(zhuǎn)化成雙曲線的之間的關系求解.【詳解】設另一焦點為,連接,由于是圓的切線,則,且,又是的中點,則是的中位線,則,且,由雙曲線定義可知,由勾股定理知,,,即,漸近線方程為,所以漸近線方程為故選C.【點睛】本題考查雙曲線的簡單的幾何性質(zhì),屬于中檔題.6、A【解析】利用獨立事件計算出甲、乙各自贏得賭金的概率,由此可求得兩人各分配的金額.【詳解】甲贏得法郎的概率為,乙贏得法郎的概率為,因此,這法郎中分配給甲法郎,分配給乙法郎.故選:A.7、D【解析】先通過誘導公式將函數(shù)化簡,進而求出導函數(shù),然后算出答案.【詳解】由題意,,故選:D.8、D【解析】根據(jù)二項式展開式的通項公式計算出正確答案.【詳解】的展開式中,含的項為.所以的系數(shù)是.故選:D9、C【解析】根據(jù)三角恒等變換結合正弦定理化簡求得,即可判定三角形形狀.【詳解】解:由題,得,即,由正弦定理可得:,所以,所以三角形中,所以,又,所以,即三角形為直角三角形.故選:C.10、A【解析】函數(shù)的圖象在點處的切線與直線平行,利用導函數(shù)的幾何含義可以求出,轉(zhuǎn)化求解數(shù)列的通項公式,進而由數(shù)列的通項公式,利用裂項相消法求和即可【詳解】解:∵函數(shù)的圖象在點處的切線與直線平行,由求導得:,由導函數(shù)得幾何含義得:,可得,∴,所以,∴數(shù)列的通項為,所以數(shù)列的前項的和即為,則利用裂項相消法可以得到:所以數(shù)列的前2021項的和為:.故選:A.11、B【解析】根據(jù)向量加法和減法法則即可用、、表示出.【詳解】故選:B.12、D【解析】先求過右焦點且與漸近線垂直的直線方程,與漸近線方程聯(lián)立求點P的坐標,再用兩點間的距離公式,結合已知條件,得到關于a,c的關系式.【詳解】雙曲線的左右焦點分別為、,一條漸近線方程為,過與這條漸近線垂直的直線方程為,由,得到點P的坐標為,又因為,所以,所以,所以.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】求出圓心和雙曲線的漸近線方程,即得解.【詳解】解:由題得圓的圓心為,雙曲線的漸近線方程為,即.所以圓心到雙曲線漸近線的距離為.故答案為:214、【解析】由不等式分離參數(shù),令,則求即可【詳解】由,得,令,則當時,;當時,;所以在上單調(diào)遞減,在上單調(diào)遞增,故由于存在,成立,則故答案為:15、【解析】根據(jù)等比數(shù)列的性質(zhì)求解即可.【詳解】因為等比數(shù)列中,故,又,故,故.故答案為:【點睛】本題主要考查了等比數(shù)列的性質(zhì)運用,需要注意分析項與公比的正負,屬于基礎題.16、【解析】分別求出圓和正方形的面積,結合幾何概型的面積型計算公式進行求解即可.【詳解】因為銅錢的面積為,正方形孔的面積為,所以隨機地向銅錢上滴一滴油,則油(油滴的大小忽略不計)正好落入孔中的概率是.故答案為:【點睛】本題考查了幾何概型計算公式,考查了數(shù)學運算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)根據(jù)作差即可得到是以為首項,為公比的等比數(shù)列,從而得到數(shù)列的通項公式;(2)由(1)可知,,根據(jù)等差數(shù)列的通項公式得到,即可得到,再令,利用錯位相減法求出,即可得證;【小問1詳解】解:因為,且,當時,則,所以,當時,,則,即,所以是以為首項,為公比的等比數(shù)列,所以;【小問2詳解】解:由(1)可知,,因為,所以,所以,令,則,所以,所以,即,所以,即;18、(1)證明見解析;(2).【解析】(1):連結交交于點O,連結,,通過四棱臺的性質(zhì)以及給定長度證明,從而證出,利用線面平行的判定定理可證明面;(2)利用線面平行的性質(zhì)定理以及基本事實可證明,即求與平面所成角的正弦值;通過條件以及面面垂直的判定定理可證明面面,則為與平面所成角,利用余弦定理求出余弦值,即可求出正弦值.【詳解】(1)證明:連結交交于點O,連結,,由多面體為四棱臺可知四點共面,且面面,面面,面面,∴,∵和均為正方形,,∴,所以為平行四邊形,∴,面,面,∴平面(2)∵面,平面,平面,∴,又∵,∴∴求直線m與平面所成角可轉(zhuǎn)化為求與平面所成角,∵和均為正方形,,且,∴,,∴,又∵面,∴∴面,∴面面,由面面,設O在面的投影為M,則,∴為與平面所成角,由,可得,又∵,∴∴,直線m與平面所成角的正弦值為.【點睛】思路點睛:(1)找兩個平面的交線,可通過兩個平面的交點找到,也可利用線面平行的性質(zhì)找和交線的平行直線;(2)求直線和平面所成角,過直線上一點做平面的垂線,則垂足和斜足連線與直線所成角即為直線和平面所成角.19、(1);(2)存在,.【解析】(1)由題設可知求出,再結合,從而可求出橢圓的方程,(2)①若直線與軸垂直,由對稱性可知,代入橢圓方程可求得結果,②若直線不與軸垂直,設直線的方程為,將直線方程與橢圓方程聯(lián)立方程組,消去,然后利用根與系數(shù)的關系,設,,再由條件,得,從而得,再利用點到直線的距離公式可求得結果【詳解】(1)由題設可知解得,,,所以橢圓的方程為:;(2)設,,①若直線與軸垂直,由對稱性可知,將點代入橢圓方程,解得,原點到該直線的距離;②若直線不與軸垂直,設直線的方程為,由消去得,則由條件,即,由韋達定理得,整理得,則原點到該直線的距離;故存在定點,使得到直線的距離為定值.20、(1);(2)眾數(shù)是,中位數(shù)為【解析】(1)利用頻率之和為一可求得的值;(2)眾數(shù)為最高小矩形底邊中點的橫坐標;中位數(shù)左邊和右邊的直方圖的面積相等可求得中位數(shù)試題解析:(1)由直方圖的性質(zhì)可得,∴(2)月平均用電量的眾數(shù)是,∵,月平均用電量的中位數(shù)在內(nèi),設中位數(shù)為,由,可得,∴月平均用電量的中位數(shù)為224考點:頻率分布直方圖;中位數(shù);眾數(shù)21、(1)(2)【解析】(1)由與的關系結合等比數(shù)列的定義得出的通項公式;(2)由(1)得出,再由錯位相減法得出的前項和.【小問1詳解】因為,所以當時,,所以.當時,,兩式相減,得,所以,所以,所以是以1為首項,2為公比的等比數(shù)列,所以.【小問2詳解】由(1)得,所以,兩邊同乘以,得,兩式相減,得,所以.22、(1);(2)證明見解析.【解析】(1)設橢圓的方程為代入點的坐標求出橢圓的方程,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論