版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆遼寧省沈陽市第一七O中學高二數(shù)學第一學期期末質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,角,,所對的邊分別為,,,若,則的形狀為()A.銳角三角形 B.直角三角形C.鈍角三角形 D.不確定2.已知橢圓的離心率為,雙曲線的離心率為,則()A. B.C. D.3.已知雙曲線的兩個焦點為,,是此雙曲線上的一點,且滿足,,則該雙曲線的方程是()A. B.C. D.4.“”是“方程表示焦點在x軸上的橢圓”的()A.充要條件 B.必要而不充分條件C.充分而不必要條件 D.既不充分也不必要條件5.已知F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個焦點,過F1的直線l交橢圓于M,N兩點,若△MF2N的周長為8,則橢圓方程為()A. B.C. D.6.已知命題:若直線的方向向量與平面的法向量垂直,則;命題:等軸雙曲線的離心率為,則下列命題是真命題的是()A. B.C. D.7.函數(shù)的大致圖象為A. B.C. D.8.如圖,正方形與矩形所在的平面互相垂直,在上,且平面,則M點的坐標為()A. B.C. D.9.“且”是“”的()A.充分不必要條件 B.必要不充分條件C充要條件 D.既不充分也不必要條件10.已知雙曲線的左焦點為,,為雙曲線的左、右頂點,漸近線上的一點滿足,且,則雙曲線的離心率為()A. B.C. D.11.如圖,在平行六面體(底面為平行四邊形的四棱柱)中,E為延長線上一點,,則為()A. B.C. D.12.用數(shù)學歸納法證明“”時,由假設(shè)證明時,不等式左邊需增加的項數(shù)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.經(jīng)過點,圓心在x軸正半軸上,半徑為5的圓的方程為________14.空間直角坐標系中,點,的坐標分別為,,則___________.15.已知,,若,則_________.16.等差數(shù)列前項之和為,若,則________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)當時,求曲線在點處的切線方程;(2)若在處取得極值,求在上的最小值.18.(12分)如圖,在正方體中,是棱的中點.(1)試判斷直線與平面的位置關(guān)系,并說明理由;(2)求證:直線面.19.(12分)已知正項等比數(shù)列的前項和為,滿足,.記.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列前項和,求使得不等式成立的的最小值.20.(12分)已知數(shù)列的前n項和為,且(1)求數(shù)列的通項公式;(2)若,數(shù)列的前n項和為,求的值21.(12分)已知橢圓一個頂點恰好是拋物線的焦點,橢圓C的離心率為.(Ⅰ)求橢圓C的標準方程;(Ⅱ)從橢圓C在第一象限內(nèi)的部分上取橫坐標為2的點P,若橢圓C上有兩個點A,B使得的平分線垂直于坐標軸,且點B與點A的橫坐標之差為,求直線AP的方程.22.(10分)已知數(shù)列為等差數(shù)列,是公比為2的等比數(shù)列,且滿足(1)求數(shù)列和的通項公式;(2)令求數(shù)列的前n項和;
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由正弦定理得出,再由余弦定理得出,從而判斷為鈍角得出的形狀.【詳解】因為,所以,所以,所以的形狀為鈍角三角形.故選:C2、D【解析】根據(jù)給定的方程求出離心率,的表達式,再計算判斷作答.【詳解】因橢圓的離心率為,則有,因雙曲線的離心率為,則有,所以.故選:D3、A【解析】由,可得進一步求出,由此得到,則該雙曲線的方程可求【詳解】,即,則.即,則該雙曲線的方程是:故選:A【點睛】方法點睛:求圓錐曲線的方程,常用待定系數(shù)法,先定式(根據(jù)已知確定焦點所在的坐標軸,設(shè)出曲線的方程),再定式(根據(jù)已知建立方程組解方程組得解).4、A【解析】由橢圓的標準方程結(jié)合充分必要條件的定義即得.【詳解】若,則方程表示焦點在軸上的橢圓;反之,若方程表示焦點在軸上的橢圓,則;所以“”是“方程表示焦點在x軸上的橢圓”的充要條件.故選:A.5、A【解析】由題得c=1,再根據(jù)△MF2N的周長=4a=8得a=2,進而求出b的值得解.【詳解】∵F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個焦點,∴c=1,又根據(jù)橢圓的定義,△MF2N的周長=4a=8,得a=2,進而得b=,所以橢圓方程為.故答案為A【點睛】本題主要考查橢圓的定義和橢圓方程的求法,意在考查學生對這些知識的掌握水平和分析推理能力.6、D【解析】先判斷出p、q的真假,再分別判斷四個選項的真假.【詳解】因為“若直線的方向向量與平面的法向量垂直,則或”,所以p為假命題;對于等軸雙曲線,,所以離心率為,所以q為真命題.所以假命題,故A錯誤;為假命題,故B錯誤;為假命題,故C錯誤;為真命題,故D正確.故選:D7、D【解析】根據(jù)函數(shù)奇偶性排除A、C.當時排除B【詳解】解:由可得所以函數(shù)為偶函數(shù),排除A、C.因為時,,排除B.故選:D.8、A【解析】設(shè)點的坐標為,由平面,可得出,利用空間向量數(shù)量積為0求得、的值,即可得出點的坐標.【詳解】設(shè)點的坐標為,,,,,則,,,平面,即,所以,,解得,所以,點的坐標為,故選:A.9、A【解析】按照充分必要條件的判斷方法判斷,“且”能否推出“”,以及“”能否推出“且”,判斷得到正確答案,【詳解】當且時,成立,反過來,當時,例:,不能推出且.所以“且”是“”的充分不必要條件.故選:A【點睛】本題考查充分不必要條件的判斷,重點考查基本判斷方法,屬于基礎(chǔ)題型.10、C【解析】由雙曲線的漸近線方程和兩點的距離公式,求得點的坐標和,在中,利用余弦定理,求得的關(guān)系式,再由離心率公式,計算即可求解.【詳解】由題意,雙曲線,可得,設(shè)在漸近線上,且點在第一象限內(nèi),由,解得,即點,所以,在中,由余弦定理可得,可得,即,所以雙曲線離心率為.故選:C.【點睛】求解橢圓或雙曲線的離心率的三種方法:1、定義法:通過已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;2、齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;3、特殊值法:通過取特殊值或特殊位置,求出離心率.11、B【解析】根據(jù)空間向量運算求得正確答案.【詳解】.故選:B12、C【解析】當成立,寫出左側(cè)的表達式,當時,寫出對應(yīng)的關(guān)系式,觀察計算即可【詳解】從到成立時,左邊增加的項為,因此增加的項數(shù)是,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)圓方程為,代入原點計算得到答案.【詳解】設(shè)圓方程為經(jīng)過點,代入圓方程則圓方程為故答案為【點睛】本題考查了圓方程的計算,設(shè)出圓方程是解題的關(guān)鍵.14、【解析】利用空間直角坐標系中兩點間的距離公式計算即得.【詳解】在空間直角坐標系中,因點,的坐標分別為,,所以.故答案為:15、【解析】由題意,,利用向量數(shù)量積的坐標運算可得,然后利用定積分性質(zhì)可得,原式,最后利用微積分基本定理計算,,利用定積分的幾何意義計算,即可得答案.【詳解】解:因為,,且,所以,解得,所以====.故答案為:.16、【解析】直接利用等差數(shù)列前項和公式和等差數(shù)列的性質(zhì)求解即可.【詳解】由已知條件得,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用導數(shù)的幾何意義求切線的斜率,再利用點斜式方程即可求出切線方程;(2)根據(jù)極值點求出的值,根據(jù)導數(shù)值的正負判斷函數(shù)的單調(diào)性,即可求出最小值.【小問1詳解】∵,,∴∴∴在處的切線為,即;【小問2詳解】∵,由題可知,∴,∴單調(diào)遞增,單調(diào)遞減,∵,,∴.18、(1)平面AEC,理由見解析(2)證明見解析【解析】(1)以線面平行的判定定理去證明直線與平面平行即可;(2)以線面垂直的判定定理去證明直線面即可.【小問1詳解】連接BD,設(shè),連接OE.在中,O、E分別是BD、的中點,則.因為直線OE在平面AEC上,而直線不在平面AEC上,根據(jù)直線與平面平行的判定定理,得到直線平面AEC.【小問2詳解】正方體中,故,又,故同理故,又,故又根據(jù)直線與平面垂直的判定定理,得直線平面.19、(1),.(2)5.【解析】(1)根據(jù)數(shù)列的遞推公式探求出其項間關(guān)系,由此求出的公比,進而求得,的通項公式.(2)利用(1)的結(jié)論結(jié)合錯位相減法求出,再將不等式變形,經(jīng)推理計算得解.【小問1詳解】解:設(shè)正項等比數(shù)列的公比為,當時,,即,則有,即,而,解得,又,則,所以,所以數(shù)列,的通項公式分別為:,.【小問2詳解】解:由(1)知,,則,則,兩式相減得:于是得,由得:,即,令,,顯然,,,,,,由,解得,即數(shù)列在時是遞增的,于是得當時,即,,則,所以不等式成立的n的最小值是5.20、(1);(2).【解析】(1)根據(jù)給定的遞推公式結(jié)合“當時,”探求相鄰兩項的關(guān)系計算作答.(2)由(1)的結(jié)論求出,再利用裂項相消法求出,即可作答.【小問1詳解】依題意,,,則當時,,于是得:,即,而當時,,即有,因此,,,所以數(shù)列是以2為首項,2為公比的等比數(shù)列,,所以數(shù)列的通項公式是.【小問2詳解】由(1)知,,從而有,所以.21、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由題意可得關(guān)于參數(shù)的方程,解之即可得到結(jié)果;(Ⅱ)設(shè)直線AP的斜率為k,聯(lián)立方程結(jié)合韋達定理可得A點坐標,同理可得B點坐標,結(jié)合橫坐標之差為,可得直線方程.【詳解】(Ⅰ)由拋物線方程可得焦點為,則橢圓C的一個頂點為,即.由,解得.∴橢圓C的標準方程是;(Ⅱ)由題可知點,設(shè)直線AP的斜率為k,由題意知,直線BP的斜率為,設(shè),,直線AP的方程為,即.聯(lián)立方程組消去y得.∵P,A為直線AP與橢圓C的交點,∴,即.把換成,得.∴,解得,當時,直線B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 一年級數(shù)學(上)計算題專項練習匯編
- 規(guī)范校外培訓合同(2篇)
- 小丑電影課件教學課件
- 老師課件制作教學
- 南京工業(yè)大學浦江學院《土力學與地基基礎(chǔ)》2023-2024學年第一學期期末試卷
- 南京航空航天大學《法律文書》2022-2023學年期末試卷
- soc芯片課件教學課件
- 石林縣風貌改造施工組織設(shè)計書(二標段)
- 南京工業(yè)大學浦江學院《企業(yè)家精神創(chuàng)新精神與商業(yè)規(guī)劃》2022-2023學年第一學期期末試卷
- 《詠柳》的說課稿
- 托管安全責任承諾書范文(19篇)
- -常規(guī)化驗單解讀
- BYK-潤濕分散劑介紹
- 家長進課堂小學生建筑知識課件
- 2023年口腔醫(yī)學期末復習-牙周病學(口腔醫(yī)學)考試歷年真題集錦帶答案
- 函數(shù)的概念 省賽獲獎
- 網(wǎng)絡(luò)安全培訓-
- 地下車位轉(zhuǎn)讓協(xié)議
- 2018年蜀都杯《辛亥革命》終稿z
- 斷絕關(guān)系的協(xié)議書兄妹
- 工程變更現(xiàn)場簽證經(jīng)濟臺帳
評論
0/150
提交評論