2025屆北京市第十九中高二上數學期末學業(yè)水平測試模擬試題含解析_第1頁
2025屆北京市第十九中高二上數學期末學業(yè)水平測試模擬試題含解析_第2頁
2025屆北京市第十九中高二上數學期末學業(yè)水平測試模擬試題含解析_第3頁
2025屆北京市第十九中高二上數學期末學業(yè)水平測試模擬試題含解析_第4頁
2025屆北京市第十九中高二上數學期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆北京市第十九中高二上數學期末學業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在三棱柱中,E,F分別是BC,中點,,則()A.B.C.D.2.以下命題是真命題的是()A.方差和標準差都是刻畫樣本數據分散程度的統(tǒng)計量B.若m為數據(i=1,2,3,····,2021)的中位數,則C.回歸直線可能不經過樣本點的中心D.若“”為假命題,則均為假命題3.設等差數列的前n項和為,且,則()A.64 B.72C.80 D.1444.已知雙曲線C:-=1的焦距為10,點P(2,1)在C的漸近線上,則C的方程為A.-=1 B.-=1C.-=1 D.-=15.已知a、b是兩條不同的直線,α、β、γ是三個不同的平面,則下列命題正確的是()A.若a∥α,a∥b,則b∥α B.若a∥α,a∥β,則α∥βC.若α⊥γ,β⊥γ,則α∥β D.若a⊥α,b⊥α,則a∥b6.數列,則是這個數列的第()A.項 B.項C.項 D.項7.等差數列中,已知,則()A.36 B.27C.18 D.98.命題任意圓的內接四邊形是矩形,則為()A.每一個圓的內接四邊形是矩形B.有的圓的內接四邊形不是矩形C.所有圓的內接四邊形不是矩形D.存在一個圓的內接四邊形是矩形9.已知圓錐的表面積為,且它的側面展開圖是一個半圓,則這個圓錐的體積為()A. B.C. D.10.在數列中,,,則()A.985 B.1035C.2020 D.207011.在空間直角坐標系中,點關于軸的對稱點為點,則點到直線的距離為()A B.C. D.612.已知數列滿足,(且),若恒成立,則M的最小值是()A.2 B.C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.若圓C的方程為,點P是圓C上的動點,點O為坐標原點,則的最大值為______14.已知長方體中,,,則點到平面的距離為______15.若將拋擲一枚硬幣所出現的結果“正面(朝上)”與“反面(朝上)”,分別記為H、T,相應的拋擲兩枚硬幣的樣本空間為,則與事件“一個正面(朝上)一個反面(朝上)”對應的樣本空間的子集為______16.若圓平分圓的周長,則直線被圓所截得的弦長為____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:的左右焦為,,點是該橢圓上任意一點,當軸時,,(1)求橢圓C的標準方程;(2)記,求實數m的最大值18.(12分)已知函數,當時,有極大值3(1)求的值;(2)求函數的極小值19.(12分)已知動點到點的距離與點到直線的距離相等.(1)求動點的軌跡方程;(2)若過點且斜率為的直線與動點的軌跡交于、兩點,求三角形AOB的面積.20.(12分)已知,C是圓B:(B是圓心)上一動點,線段AC的垂直平分線交BC于點P(1)求動點P的軌跡的方程;(2)設E,F為與x軸的兩交點,Q是直線上動點,直線QE,QF分別交于M,N兩點,求證:直線MN過定點21.(12分)已知橢圓C:的左右焦點分別為,,點P是橢圓C上位于第二象限的任一點,直線l是的外角平分線,過左焦點作l的垂線,垂足為N,延長交直線于點M,(其中O為坐標原點),橢圓C的離心率為(1)求橢圓C的標準方程;(2)過右焦點的直線交橢圓C于A,B兩點,點T在線段AB上,且,點B關于原點的對稱點為R,求面積的取值范圍.22.(10分)已知函數(1)求的圖象在點處的切線方程;(2)求在上的最大值與最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據空間向量線性運算的幾何意義進行求解即可.【詳解】,故選:D2、A【解析】A:根據方差和標準差的定義進行判斷;B:根據中位數的定義判斷;C:根據回歸直線必過樣本中心點進行判斷;D:根據“且”命題真假關系進行判斷.【詳解】對于A,方差和標準差都是刻畫樣本數據分散程度的統(tǒng)計量,故A正確;對于B,若為數據,2,3,,的中位數,需先將數據從小到大排列,此時數據里面之間的數順序可能發(fā)生變化,則為排序后的第1010個數據的值,這個數不一定是原來的,故B錯誤;對于C,回歸直線一定經過樣本點的中心,,故C錯誤;對于D,若“”為假命題,則、中至少有一個是假命題,故D錯誤;故選:A3、B【解析】利用等差數列下標和性質,求得,再用等差數列前項和公式即可求解.【詳解】根據等差數列的下標和性質,,解得,.故選:B.4、A【解析】由題意得,雙曲線的焦距為,即,又雙曲線的漸近線方程為,點在的漸近線上,所以,聯立方程組可得,所以雙曲線的方程為考點:雙曲線的標準方程及簡單的幾何性質5、D【解析】根據空間線、面的位置關系有關定理,對四個選項逐一分析排除,由此得出正確選項.【詳解】對于A選項,直線有可能平面內,故A選項錯誤.對于B選項,兩個平面有可能相交,平行于它們的交線,故B選項錯誤.對于C選項,可能相交,故C選項錯誤.根據線面垂直的性質定理可知D選項正確.故選:D.6、A【解析】根據數列的規(guī)律,求出通項公式,進而求出是這個數列的第幾項【詳解】數列為,故通項公式為,是這個數列的第項.故選:A.7、B【解析】直接利用等差數列的求和公式及等差數列的性質求解.【詳解】解:由題得.故選:B8、B【解析】全稱命題的否定特稱命題,任意改為存在,把結論否定.【詳解】全稱量詞命題的否定是特稱命題,需要將全稱量詞換為存在量詞,答案A,C不符合題意,同時對結論進行否定,所以:有的圓的內接四邊形不是矩形,故選:B.9、D【解析】設圓錐的半徑為,母線長,根據已知條件求出、的值,可求得該圓錐的高,利用錐體的體積公式可求得結果.【詳解】設圓錐的半徑為,母線長,因為側面展開圖是一個半圓,則,即,又圓錐的表面積為,則,解得,,則圓錐的高,所以圓錐的體積,故選:D.10、A【解析】根據累加法得,,進而得.【詳解】解:因為所以,當時,,,……,,所以,將以上式子相加得,所以,,.當時,,滿足;所以,.所以.故選:A11、C【解析】按照空間中點到直線的距離公式直接求解.【詳解】由題意,,,的方向向量,,則點到直線的距離為.故選:C.12、C【解析】根據,(且),利用累加法求得,再根據恒成立求解.【詳解】因為數列滿足,,(且)所以,,,,因為恒成立,所以,則M的最小值是,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據點與圓的位置關系求得正確答案.【詳解】圓的方程可化為,所以圓心為,半徑.由于,所以原點在圓外,所以最大值為.故答案為:14、##2.4【解析】過作于,可證即為點到平面的距離.【詳解】過作于,∵是長方體,∴平面平面,又∵平面平面,∴平面,設點到平面的距離為,∵∥平面,∴根據等面積法得,故答案為:.15、,,,【解析】先寫出與事件“一個正面(朝上)一個反面(朝上)”對應的樣本空間,再寫出其全部子集即可.【詳解】與事件“一個正面(朝上)一個反面(朝上)”對應的樣本空間為,此空間的子集為,,,故答案為:,,,16、6【解析】根據兩圓的公共弦過圓的圓心即可獲解【詳解】兩圓相減得公共弦所在的直線方程為由題知兩圓的公共弦過圓的圓心,所以即,又,所以到直線的距離所以直線被圓所截得的弦長為故答案為:6三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用橢圓的定義及勾股定理可求解;(2)問題轉化為在軸截距的問題,臨界條件為直線與橢圓相切,求解即可.【小問1詳解】因為,,所以,∴,所以橢圓標準方程為:【小問2詳解】要求的最值,即求直線在軸截距的最值,可知當直線與橢圓相切時,m取得最值.聯立方程:,整理得,解得所以實數m的最大值為18、(1);(2)0【解析】(1)由題意得,則可得到關于實數的方程組,求解方程組,即可求得的值;(2)結合(1)中的值得出函數的解析式,即可利用導數求得函數的極小值.【詳解】(1),當時,有極大值3,所以,解得,經檢驗,滿足題意,所以;(2)由(1)得,則,令,得或,列表得極小值極大值易知是函數的極小值點,所以當時,函數有極小值0【點睛】本題主要考查了函數的極值的概念,以及利用導數求解函數的極值,考查了學生對極值概念的理解與運算求解能力.19、(1)(2)【解析】小問1:由拋物線的定義可求得動點的軌跡方程;小問2:可知直線的方程為,設點、,將直線的方程與拋物線的方程聯立,求出的值,利用拋物線的定義可求得的值,結合面積公式即可求解小問1詳解】由題意點的軌跡是以為焦點,直線為準線的拋物線,所以,則,所以動點的軌跡方程是.【小問2詳解】由已知直線的方程是,設、,由得,,所以,則,故,20、(1)(2)證明見解析【解析】(1)根據,利用橢圓的定義求解;(2)(解法1)設,得到,的方程,與橢圓方程聯立,求得M,N的坐標,寫出直線的方程求解;(解法2)上同解法1,由對稱性分析知動直線MN所過定點一定在x軸上,設所求定點為,由C,D,T三點共線,然后由求解;(解法3)設,由,,設:,:,其中,與橢圓方程聯立,整理得,由F,M,N三點的橫坐標為該方程的三個根,得到:求解.【小問1詳解】解:由題知,則,由橢圓的定義知動點P的軌跡為以A,B為焦點,6為長軸長的橢圓,所以軌跡的方程為【小問2詳解】(解法1)易知E,F為橢圓的長軸兩端點,不妨設,,設,則,,于是:,:,聯立得,解得或,易得,同理當,即時,:;當時,有,于是:,即綜上直線MN過定點(解法2)上同解法1,得,,由對稱性分析知動直線MN所過定點一定在x軸上,設所求定點為,由C,D,T三點共線,得,即,于是,整理得,由t的任意性知,即,所以直線MN過定點(解法3)設,則,,當時,直線MN即為x軸;當時,因為,所以,則,設:,:,其中,聯立,得,整理得,易知F,M,N三點的橫坐標為該方程的三個根,所以:,由及的任意性,知直線MN過定點21、(1)(2)【解析】(1)根據題意可得到的值,結合橢圓的離心率,即可求得b,求得答案;(2)由可得,進一步推得,于是設直線方程和橢圓方程聯立,利用根與系數的關系,求得弦長,表示出三角形AOB的面積,利用換元法結合二次函數的性質求其范圍.【小問1詳解】由題意可知:為的中點,為的中點,為的中位線,,,又,故,即,,又,,,橢圓的標準方程為;【小問2詳解】由題意可知,,,①當過的直線與軸垂直時,,,②當過的直線不與軸垂直時,可設,,直線方程為,聯立,可得:.,,,由弦長公式可知,到距離為,故,令,則原式變?yōu)?,令,原式變?yōu)楫敃r,故,由①②可知.【點睛】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論