




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆浙江省溫州市“十五校聯(lián)合體”數(shù)學高二上期末考試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在三棱錐中,,則三棱錐外接球的表面積是()A. B.C. D.2.彬塔,又稱開元寺塔、彬縣塔,民間稱“雷峰塔”,位于陜西省彬縣城內(nèi)西南紫薇山下.某同學為測量彬塔的高度,選取了與塔底在同一水平面內(nèi)的兩個測量基點與,現(xiàn)測得,,,在點測得塔頂?shù)难鼋菫?0°,則塔高()A.30m B.C. D.3.曲線在處的切線如圖所示,則()A.0 B.C. D.4.在條件下,目標函數(shù)的最大值為2,則的最小值是()A.20 B.40C.60 D.805.過雙曲線Ω:(a>0,b>0)右焦點F作x軸的垂線,與Ω在第一象限的交點為M,且直線AM的斜率大于2,其中A為Ω的左頂點,則Ω的離心率的取值范圍為()A.(1,3) B.(3,+∞)C.(1,) D.(,+∞)6.圓與圓的位置關系為()A.內(nèi)切 B.外切C.相交 D.相離7.已知等比數(shù)列中,,,則首項()A. B.C. D.08.函數(shù)在處有極值為,則的值為()A. B.C. D.9.已知直線與平行,則的值為()A. B.C. D.10.已知點是橢圓上的任意一點,過點作圓:的切線,設其中一個切點為,則的取值范圍為()A. B.C. D.11.已知點是拋物線上的動點,過點作圓的切線,切點為,則的最小值為()A. B.C. D.12.已知等比數(shù)列中,,則由此數(shù)列的奇數(shù)項所組成的新數(shù)列的前項和為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設與是定義在同一區(qū)間上的兩個函數(shù),若函數(shù)在上有兩個不同的零點,則稱與在上是“關聯(lián)函數(shù)”.若與在上是“關聯(lián)函數(shù)”,則實數(shù)的取值范圍是____________.14.拋物線的焦點為F,準線為l,C上的一點M在l上的射影為N,已知線段FN的垂直平分線方程為,則___________;___________.15.已知圓,圓與軸相切,與圓外切,且圓心在直線上,則圓的標準方程為________16.已知橢圓方程為,左、右焦點分別為、,P為橢圓上的動點,若的最大值為,則橢圓的離心率為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在△中,已知、、分別是三內(nèi)角、、所對應的邊長,且(Ⅰ)求角的大??;(Ⅱ)若,且△的面積為,求.18.(12分)已知直線l:x-y+2=0,一個圓的圓心C在x軸正半軸上,且該圓與直線l和y軸均相切(1)求該圓的方程;(2)若直線x+my-1=0與圓C交于A、B兩點,且|AB|=,求m的值19.(12分)的內(nèi)角A,B,C的對邊分別為a,b,c.已知.(1)求角C;(2)若,,求的周長.20.(12分)在平面直角坐標系xOy中,橢圓C:的左,右頂點分別為A、B,點F是橢圓的右焦點,,(1)求橢圓C的方程;(2)不過點A的直線l交橢圓C于M、N兩點,記直線l、AM、AN的斜率分別為k、、.若,證明直線l過定點,并求出定點的坐標21.(12分)已知是等差數(shù)列,,.(1)求的通項公式;(2)設的前項和,求的值.22.(10分)一臺還可以用的機器由于使用的時間較長,它按不同的轉速生產(chǎn)出來的某機械零件有一些會有缺陷,每小時生產(chǎn)有缺陷零件的多少隨機器運轉的速率而變化,下表為抽樣試驗結果:轉速(轉/秒)1615129每小時生產(chǎn)有缺陷的零件數(shù)(件)10985通過觀察散點圖,發(fā)現(xiàn)與有線性相關關系:(1)求關于的回歸直線方程;(2)若實際生產(chǎn)中,允許每小時生產(chǎn)的產(chǎn)品中有缺陷的零件最多為10個,那么機器的運轉速度應控制在什么范圍內(nèi)?(參考:回歸直線方程為,其中,)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)題意,將該幾何體放置于正方體中截得,進而轉化為求邊長為2的正方體的外接球,再求解即可.【詳解】解:因為在三棱錐中,,所以將三棱錐補形成正方體如圖所示,正方體的邊長為2,則體對角線長為,外接球的半徑為,所以外接球的表面積為,故選:.2、D【解析】在△中有,再應用正弦定理求,再在△中,即可求塔高.【詳解】由題設知:,又,△中,可得,在△中,,則.故選:D3、C【解析】由圖示求出直線方程,然后求出,,即可求解.【詳解】由直線經(jīng)過,,可求出直線方程為:∵在處的切線∴,∴故選:C【點睛】用導數(shù)求切線方程常見類型:(1)在出的切線:為切點,直接寫出切線方程:;(2)過出的切線:不是切點,先設切點,聯(lián)立方程組,求出切點坐標,再寫出切線方程:.4、C【解析】首先畫出可行域,找到最優(yōu)解,得到關系式作為條件,再去求的最小值.【詳解】畫出的可行域,如下圖:由得由得;由得;目標函數(shù)取最大值時必過N點,則則(當且僅當時等號成立)故選:C5、B【解析】求點A和M的坐標,進而表示斜率,可得,整理得b2>2ac+2a2,從而可解得離心率的范圍.【詳解】F(c,0),設M(c,yM),(yM>0)代入可解得yM=,A(-a,0),由于kAM>2,即,整理得b2>2ac+2a2,又b2=c2-a2,∴c2-a2>2ac+2a2,即c2-2ac-3a2>0,∴e2-2e-3>0,e<-1(舍)或e>3.答案:B【點睛】解決橢圓和雙曲線的離心率的求值及范圍問題其關鍵就是確立一個關于的方程或不等式,再根據(jù)的關系消掉得到的關系式,而建立關于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質、點的坐標的范圍等.6、B【解析】求出兩圓的圓心距與半徑之和、半徑之差比較大小即可得出正確答案.【詳解】由可得圓心為,半徑,由可得圓心為,半徑,所以圓心距為,所以兩圓相外切,故選:B.7、B【解析】設等比數(shù)列的公比為q,根據(jù)等比數(shù)列的通項公式,列出方程組,即可求得,進而可求得答案.【詳解】設等比數(shù)列公比為q,則,解得,所以.故選:B8、B【解析】根據(jù)函數(shù)在處有極值為,由,求解.【詳解】因為函數(shù),所以,所以,,解得a=6,b=9,=-3,故選:B9、C【解析】由兩直線平行可得,即可求出答案.【詳解】直線與平行故選:C.10、B【解析】設,得到,利用橢圓的范圍求解.【詳解】解:設,則,,,因為,所以,即,故選:B11、C【解析】分析可知圓的圓心為拋物線的焦點,可求出的最小值,再利用勾股定理可求得的最小值.【詳解】設點的坐標為,有,由圓的圓心坐標為,是拋物線的焦點坐標,有,由圓的幾何性質可得,又由,可得的最小值為故選:C.12、B【解析】確實新數(shù)列是等比數(shù)列及公比、首項后,由等比數(shù)列前項和公式計算,【詳解】由題意,新數(shù)列為,所以,,前項和為故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】令得,設函數(shù),則直線與函數(shù)在區(qū)間上的圖象有兩個交點,利用導數(shù)分析函數(shù)的單調性與極值,利用數(shù)形結合思想可求得實數(shù)的取值范圍.【詳解】令得,設函數(shù),則直線與函數(shù)在區(qū)間上的圖象有兩個交點,,令,可得,列表如下:極小值,,如圖所示:由圖可知,當時,直線與函數(shù)在區(qū)間上的圖象有兩個交點,因此,實數(shù)的取值范圍是.故答案為:.14、①.2②.4【解析】設點,根據(jù)給定條件結合拋物線定義可得線段FN的中點及點M都在線段FN的垂直平分線,再列式計算作答.【詳解】拋物線的焦點,準線l:,設點,則,線段FN的中點,由拋物線定義知:,即點M在線段FN的垂直平分線,因此,,解得,而,則有,,所以,.故答案為:2;4【點睛】結論點睛:拋物線方程中,字母p的幾何意義是拋物線的焦點F到準線的距離,等于焦點到拋物線頂點的距離15、【解析】根據(jù)題干求得圓的圓心及半徑,再利用圓與軸相切,與圓外切,且圓心在直線上確定圓的圓心及半徑.【詳解】圓的標準方程為,所以圓心,半徑為由圓心在直線上,可設因為與軸相切,與圓外切,于是圓的半徑為,從而,解得因此,圓的標準方程為故答案為:【點睛】判斷兩圓的位置關系常用幾何法,即用兩圓圓心距與兩圓半徑和與差之間的關系,一般不采用代數(shù)法.兩圓相切注意討論內(nèi)切外切兩種情況.16、【解析】利用橢圓的定義結合余弦定理可求得,再利用公式可求得該橢圓的離心率的值.【詳解】由橢圓的定義可得,由余弦定理可得,因為的最大值為,則,可得,因此,該橢圓的離心率為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)利用余弦定理和得到關于角A的關系式,求解A(II)再結合正弦面積公式得到三角形的邊長的求解【詳解】解:(Ⅰ)在△ABC中,(Ⅱ)由,得18、(1)(2)0【解析】(1)設出圓心坐標,利用題干條件得到方程,求出,從而求出該圓的方程;(2)利用點到直線距離公式及垂徑定理進行求解.【小問1詳解】設圓心為,,則由題意得:,解得:或(舍去),故該圓的方程為【小問2詳解】圓心到直線的距離為,由垂徑定理得:,解得:19、(1)(2)【解析】(1)根據(jù)正弦定理把化成,利用和角公式可得從而求得角;(2)根據(jù)三角形的面積和角的值求得,由余弦定理求得邊得到的周長.試題解析:(1)由已知可得(2)又,周長為考點:正余弦定理解三角形.20、(1);(2)證明見解析,(-5,0).【解析】(1)寫出A、B、F的坐標,求出向量坐標,根據(jù)向量的關系即可列出方程組,求得a、b、c和橢圓的標準方程;(2)設直線l的方程為y=kx+m,,.聯(lián)立直線l與橢圓方程,根據(jù)韋達定理得到根與系數(shù)的關系,求出,根據(jù)即可求得k和m的關系,即可證明直線過定點并求出該定點.【小問1詳解】由題意,知A(-a,0),B(a,0),F(xiàn)(c,0)∵,∴解得從而b2=a2-c2=3∴橢圓C的方程;【小問2詳解】設直線l的方程為y=kx+m,,∵直線l不過點A,因此-2k+m≠0由得時,,,∴由,可得3k=m-2k,即m=5k,故l的方程為y=kx+5k,恒過定點(-5,0).21、(1);(2).【解析】(1)設等差數(shù)列的公差為,利用題中等式建立、的方程組,求出、的值,然后根據(jù)等差數(shù)列的通項公式求出數(shù)列的通項公式;(2)利用等差數(shù)列前項和公式求出,然后由求出的值.【詳解】(1)設等差數(shù)列的公差為,則,解得,,數(shù)列的通項為;(2)數(shù)列的前
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇城鄉(xiāng)建設職業(yè)學院《多媒體影像創(chuàng)作》2023-2024學年第二學期期末試卷
- 山東省菏澤市重點高中2024-2025學年高三化學試題5月最后一卷試題含解析
- 江蘇省泰興市達標名校2024-2025學年初三年級第十一次網(wǎng)考生物試題含解析
- 江蘇省南京市鼓樓區(qū)重點達標名校2024-2025學年中考預測金卷數(shù)學試題理(湖南卷)含解析
- 西昌學院《秘書禮儀》2023-2024學年第二學期期末試卷
- 遼寧省丹東第十中學2025屆初三第二學期期初模擬訓練一英語試題含答案
- 宿舍文化節(jié)活動流程
- 技能培訓經(jīng)典案例分享
- 上海市金山區(qū)2025屆高三二模語文試題(含答案)
- 下肢血管潰瘍的治療和護理
- 2022版義務教育語文課程標準(2022版含新增和修訂部分)
- 《新農(nóng)技推廣法解讀》ppt課件
- 社區(qū)家庭病床護理記錄文本匯總
- 色譜、質譜、聯(lián)用
- 劍橋BEC中級真題第四輯TEST1
- 畢業(yè)設計(論文)-CK6150總體及縱向進給和尾座部件的設計
- 施工項目人員任命書(范本)
- 苯酐裝置國內(nèi)同類裝置事故案例
- 蘇教版小學數(shù)學四年級下冊《圖形旋轉》練習題
- 智慧樹知到《開啟疑案之門的金鑰匙司法鑒定》見面課答案
- 結構化面試技巧(完整版).ppt
評論
0/150
提交評論