2025屆吉林省遼河高級中學高一數(shù)學第一學期期末經(jīng)典模擬試題含解析_第1頁
2025屆吉林省遼河高級中學高一數(shù)學第一學期期末經(jīng)典模擬試題含解析_第2頁
2025屆吉林省遼河高級中學高一數(shù)學第一學期期末經(jīng)典模擬試題含解析_第3頁
2025屆吉林省遼河高級中學高一數(shù)學第一學期期末經(jīng)典模擬試題含解析_第4頁
2025屆吉林省遼河高級中學高一數(shù)學第一學期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆吉林省遼河高級中學高一數(shù)學第一學期期末經(jīng)典模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列四組函數(shù)中,定義域相同的一組是()A.和 B.和C.和 D.和2.已知冪函數(shù)的圖像過點,則下列關于說法正確的是()A.奇函數(shù) B.偶函數(shù)C.定義域為 D.在單調(diào)遞減3.已知函數(shù),若對任意,總存在,使得不等式都恒成立,則實數(shù)的取值范圍為()A. B.C. D.4.設四邊形為平行四邊形,,若點滿足,,則A. B.C. D.5.16、17世紀,隨著社會各領域的科學知識迅速發(fā)展,龐大的數(shù)學計算需求對數(shù)學運算提出了更高要求,改進計算方法,提高計算速度和準確度成了當務之急.蘇格蘭數(shù)學家納皮爾發(fā)明了對數(shù),是簡化大數(shù)運算的有效工具,恩格斯曾把納皮爾的對數(shù)稱為十七世紀的三大數(shù)學發(fā)明之一.已知,,設,則所在的區(qū)間為(是自然對數(shù)的底數(shù))()A. B.C. D.6.下列關于函數(shù),的單調(diào)性敘述正確的是()A.在上單調(diào)遞增,在上單調(diào)遞減B.在上單調(diào)遞增,在上單調(diào)遞減C.在及上單調(diào)遞增,在上單調(diào)遞減D.在上單調(diào)遞增,在及上單調(diào)遞減7.已知函數(shù),則該函數(shù)的單調(diào)遞減區(qū)間是()A. B.C. D.8.矩形ABCD中,AB=4,BC=3,沿AC將矩形ABCD折成一個直二面角B-AC-D,則四面體ABCD的外接球的體積是()A.12512πC.1256π9.已知函數(shù)f(x)=loga(x+1)(其中a>1),則f(x)<0的解集為()A. B.C. D.10.在北京召開的國際數(shù)學家大會的會標如圖所示,它是由個相同的直角三角形與中間的小正方形拼成的一個大正方形,若直角三角形中較小的銳角為,大正方形的面積是,小正方形的面積是,則A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設三棱錐的三條側棱兩兩垂直,且,則三棱錐的體積是______12.已知角終邊經(jīng)過點,則___________.13.已知則________14.A是銳二面角α-l-β的α內(nèi)一點,AB⊥β于點B,AB=,A到l的距離為2,則二面角α-l-β的平面角大小為________.15.已知正數(shù)、滿足,則的最大值為_________16.冪函數(shù)的圖象經(jīng)過點,則________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知冪函數(shù)為偶函數(shù)(1)求的解析式;(2)若函數(shù)在區(qū)間(2,3)上為單調(diào)函數(shù),求實數(shù)的取值范圍18.如圖,四邊形是矩形,平面,平面,,(1)證明:平面平面;(2)求三棱錐的體積19.提高過江大橋的車輛通行的車輛通行能力可改善整個城市的交通狀況,在一般情況下大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù).當橋上的車流密度達到200輛/千米時,就會造成堵塞,此時車流速度為0:當車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當時,車流速度是車流密度的一次函數(shù)(1)當時,求函數(shù)的表達式:(2)如果車流量(單位時間內(nèi)通過橋上某或利點的車輛數(shù))(單位:輛/小時)那么當車流密度為多大時,車流量可以達到最大,并求出最大值,(精確到1輛/小時)20.(1)計算:;(2)已知,,求證:21.已知.(1)化簡;(2)若是第二象限角,且,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)根式、分式、對數(shù)的性質(zhì)求各函數(shù)的定義域即可.【詳解】A:定義域為,定義域為,不合題設;B:定義域為,定義域為,不合題設;C:、定義域均為,符合題設;D:定義域為,定義域為,不合題設;故選:C.2、D【解析】設出冪函數(shù)的解析式,將所過點坐標代入,即可求出該函數(shù).再根據(jù)冪函數(shù)的性質(zhì)的結論,選出正確選項.【詳解】設冪函數(shù)為,因為函數(shù)過點,所以,則,所以,該函數(shù)定義域為,則其既不是奇函數(shù)也不是偶函數(shù),且由可知,該冪函數(shù)在單調(diào)遞減.故選:D.3、D【解析】探討函數(shù)性質(zhì),求出最大值,再借助關于a函數(shù)單調(diào)性列式計算作答.【詳解】依題意,,則是上的奇函數(shù),當時,,在上單調(diào)遞增,在上單調(diào)遞減,則,由奇函數(shù)性質(zhì)知,函數(shù)在上的最大值是,依題意,存在,,令,顯然是一次型函數(shù),因此,或,解得或,所以實數(shù)的取值范圍為.故選:D4、D【解析】令,則,,故選D5、A【解析】根據(jù)指數(shù)與對數(shù)運算法則直接計算.【詳解】,所以故選:A.6、C【解析】先求出函數(shù)的一般性單調(diào)區(qū)間,再結合選項判斷即可.【詳解】的單調(diào)增區(qū)間滿足:,即,所以其單調(diào)增區(qū)間為:,同理可得其單調(diào)減區(qū)間為:.由于,令中的,有,,所以在上的增區(qū)間為及.令中的,有,所以在上的減區(qū)間為.故選:C7、C【解析】先用誘導公式化簡,再求單調(diào)遞減區(qū)間.【詳解】要求單調(diào)遞減區(qū)間,只需,.故選:C.【點睛】(1)三角函數(shù)問題通常需要把它化為“一角一名一次”的結構,借助于或的性質(zhì)解題;(2)求單調(diào)區(qū)間,最后的結論務必寫成區(qū)間形式,不能寫成集合或不等式8、C【解析】由矩形的對角線互相平分且相等即球心到四個頂點的距離相等推出球心為AC的中點,即可求出球的半徑,代入體積公式即可得解.【詳解】因為矩形對角線互相平分且相等,根據(jù)外接球性質(zhì)易知外接球球心到四個頂點的距離相等,所以球心在對角線AC上,且球的半徑為AC長度的一半,即r=12AC=故選:C【點睛】本題考查球與幾何體的切、接問題,二面角的概念,屬于基礎題.9、D【解析】因為已知a的取值范圍,直接根據(jù)根據(jù)對數(shù)函數(shù)的單調(diào)性和定點解出不等式即可【詳解】因為,所以在單調(diào)遞增,所以所以,解得故選D【點睛】在比較大小或解不等式時,靈活運用函數(shù)的單調(diào)性以及常數(shù)和對指數(shù)之間的轉(zhuǎn)化10、C【解析】根據(jù)題意即可算出每個直角三角形面積,再根據(jù)勾股定理和面積關系即可算出三角形的兩條直角邊.從而算出【詳解】由題意得直角三角形的面積,設三角形的邊長分別為,則有,所以,所以,選C.【點睛】本題主要考查了三角形的面積公式以及直角三角形中,正弦、余弦的計算,屬于基礎題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)錐體的體積公式,找到并求出三棱錐的高及底面面積即可求解.【詳解】由題意可知該三棱錐為棱長為2的正方體的一個角,如圖所示:所以故答案為:【點睛】本題考查錐體體積公式的應用,考查運算求解能力,屬于基礎題.12、【解析】根據(jù)正切函數(shù)定義計算【詳解】由題意故答案為:13、【解析】分段函數(shù)的求值,在不同的區(qū)間應使用不同的表達式.【詳解】,故答案為:.14、【解析】如圖,過點B作與,連,則有平面,從而得,所以即為二面角的平面角在中,,所以,所以銳角即二面角的平面角的大小為答案:點睛:作二面角的平面角可以通過垂線法進行,在一個半平面內(nèi)找一點作另一個半平面的垂線,再過垂足作二面角的棱的垂線,兩條垂線確定的平面和二面角的棱垂直,由此可得二面角的平面角,然后通過解三角形的方法求得角,解題時要注意所求角的范圍15、【解析】利用均值不等式直接求解.【詳解】因為且,所以,即,當且僅當,即時,等號成立,所以的最大值為.故答案為:.16、【解析】設冪函數(shù)的解析式,然后代入求解析式,計算.【詳解】設,則,解得,所以,得故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)由為冪函數(shù)知,得或又因為函數(shù)為偶函數(shù),所以函數(shù)不符合舍去當時,,符合題意;.(2)由(1)得,即函數(shù)的對稱軸為,由題意知在(2,3)上為單調(diào)函數(shù),所以或,即或.18、(1)證明見解析(2)1【解析】(1)由平面,平面,得到,利用線面平行的判定定理得到平面,平面,然后利用面面平行的判定定理證明;(2)由平面,得到點到平面的距離,然后利用求解【小問1詳解】證明:平面,平面,,又平面,平面,平面,在矩形中,,且平面,平面,平面,又,∴平面平面【小問2詳解】平面,∴點到平面的距離為,∵四邊形矩形,,,,19、(1);(2)當車流密度為100輛/千米時,車流量可以達到最大,最大值約為3333/小時..【解析】詳解】試題分析:本題考查函數(shù)模型在實際中的應用以及分段函數(shù)最值的求法.(1)根據(jù)題意用分段函數(shù)并結合待定系數(shù)法求出函數(shù)的關系式.(2)首先由題意得到的解析式,再根據(jù)分段函數(shù)最值的求得求得最值即可試題解析:(1)由題意:當時,;當時,設由已知得解得∴綜上可得(2)依題意并由(1)可得①當時,為增函數(shù),∴當時,取得最大值,且最大值為1200②當時,,∴當時,取得最大值,且最大值為.所以的最大值為故當車流密度為100輛/千米時,車流量可以達到最大,且最大值為3333輛/小時.20、(1)13;(2)證明見解析.【解析】(1)根據(jù)指數(shù)和對數(shù)的運算法則直接計算可得;(2)根據(jù)對數(shù)函數(shù)的單調(diào)性分別求出范圍和范圍可判斷.【詳解】(1)原式(2)因為在上遞減,在上遞增,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論