版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省湖州市長興縣德清縣安吉縣2025屆高一上數(shù)學(xué)期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知冪函數(shù)過點,則在其定義域內(nèi)()A.為偶函數(shù) B.為奇函數(shù)C.有最大值 D.有最小值2.在數(shù)學(xué)史上,一般認為對數(shù)的發(fā)明者是蘇格蘭數(shù)學(xué)家——納皮爾(Napier,1550-1617年).在納皮爾所處的年代,哥白尼的“太陽中心說”剛剛開始流行,這導(dǎo)致天文學(xué)成為當(dāng)時的熱門學(xué)科.可是由于當(dāng)時常量數(shù)學(xué)的局限性,天文學(xué)家們不得不花費很大的精力去計算那些繁雜的“天文數(shù)字”,因此浪費了若干年甚至畢生的寶貴時間.納皮爾也是當(dāng)時的一位天文愛好者,為了簡化計算,他多年潛心研究大數(shù)字的計算技術(shù),終于獨立發(fā)明了對數(shù).在那個時代,計算多位數(shù)之間的乘積,還是十分復(fù)雜的運算,因此納皮爾首先發(fā)明了一種計算特殊多位數(shù)之間乘積的方法.讓我們來看看下面這個例子:
12345678…1415…272829248163264128256…1638432768…134217728268435356536870912這兩行數(shù)字之間的關(guān)系是極為明確的:第一行表示2的指數(shù),第二行表示2的對應(yīng)冪.如果我們要計算第二行中兩個數(shù)的乘積,可以通過第一行對應(yīng)數(shù)字的和來實現(xiàn).比如,計算64×256的值,就可以先查第一行的對應(yīng)數(shù)字:64對應(yīng)6,256對應(yīng)8,然后再把第一行中的對應(yīng)數(shù)字加和起來:6+8=14;第一行中的14,對應(yīng)第二行中的16384,所以有:64×256=16384,按照這樣的方法計算:16384×32768=A.134217728 B.268435356C.536870912 D.5137658023.設(shè)為定義在上的偶函數(shù),且在上為增函數(shù),則的大小順序是()A. B.C. D.4.命題“對任意x∈R,都有x2≥1”的否定是()A.對任意x∈R,都有x2<1 B.不存在x∈R,使得x2<1C.存在x∈R,使得x2≥1 D.存在x∈R,使得x2<15.已知角α的終邊過點,則的值是()A. B.C.0 D.或6.已知且,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.若關(guān)于的不等式的解集為,則函數(shù)在區(qū)間上的最小值為()A. B.C. D.8.命題的否定是()A. B.C. D.9.sin1830°等于()A. B.C. D.10.已知函數(shù),,則函數(shù)的值域為()A B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)定義域是________(結(jié)果用集合表示)12.已知一個扇形的面積為,半徑為,則其圓心角為___________.13.已知等差數(shù)列的前項和為,,則__________14.古希臘數(shù)學(xué)家歐幾里得所著《幾何原本》中的“幾何代數(shù)法”,很多代數(shù)公理、定理都能夠通過圖形實現(xiàn)證明,并稱之為“無字證明”.如圖,O為線段中點,C為上異于O的一點,以為直徑作半圓,過點C作的垂線,交半圓于D,連結(jié),過點C作的垂線,垂足為E.設(shè),則圖中線段,線段,線段_______;由該圖形可以得出的大小關(guān)系為___________.15.______________16.若,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知集合,(1)若,求實數(shù)a,b滿足的條件;(2)若,求實數(shù)m的取值范圍18.已知二次函數(shù)滿足:,且該函數(shù)的最小值為1.(1)求此二次函數(shù)的解析式;(2)若函數(shù)的定義域為(其中),問是否存在這樣的兩個實數(shù)m,n,使得函數(shù)的值域也為A?若存在,求出m,n的值;若不存在,請說明理由.19.降噪耳機主要有主動降噪耳機和被動降噪耳機兩種.其中主動降噪耳機的工作原理是:先通過微型麥克風(fēng)采集周圍的噪聲,然后降噪芯片生成與噪聲振幅相同、相位相反的反向聲波來抵消噪聲(如圖所示).已知某噪聲的聲波曲線是,其中的振幅為2,且經(jīng)過點.(1)求該噪聲聲波曲線的解析式以及降噪芯片生成的降噪聲波曲線的解析式;(2)將函數(shù)圖象上各點的橫坐標變?yōu)樵瓉淼谋?,縱坐標不變得到函數(shù)的圖象.若銳角滿足,求的值.20.已知函數(shù)f(x)=Asin(ωx+φ)的圖象的一部分如圖所示(1)求函數(shù)f(x)的解析式;(2)當(dāng)時,求函數(shù)y=f(x)+f(x+2)的最大值與最小值及相應(yīng)的x值21.已知平面上點,且.(1)求;(2)若點,用基底表示.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】設(shè)冪函數(shù)為,代入點,得到,判斷函數(shù)的奇偶性和值域得到答案.【詳解】設(shè)冪函數(shù)為,代入點,即,定義域為,為偶函數(shù)且故選:【點睛】本題考查了冪函數(shù)的奇偶性和值域,意在考查學(xué)生對于函數(shù)性質(zhì)的綜合應(yīng)用.2、C【解析】先找到16384與32768在第一行中的對應(yīng)數(shù)字,進行相加運算,再找和對應(yīng)第二行中的數(shù)字即可.【詳解】由已知可知,要計算16384×32768,先查第一行的對應(yīng)數(shù)字:16384對應(yīng)14,32768對應(yīng)15,然后再把第一行中的對應(yīng)數(shù)字加起來:14+15=29,對應(yīng)第二行中的536870912,所以有:16384×32768=536870912,故選C.【點睛】本題考查了指數(shù)運算的另外一種算法,關(guān)鍵是認真審題,理解題意,屬于簡單題.3、A【解析】根據(jù)單調(diào)性結(jié)合偶函數(shù)性質(zhì),進行比較大小即可得解.【詳解】因為為偶函數(shù),所以又在上為增函數(shù),所以,所以故選:A4、D【解析】根據(jù)含有一個量詞的否定是改量詞、否結(jié)論直接得出.【詳解】因為含有一個量詞的否定是改量詞、否結(jié)論,所以命題“對任意x∈R,都有x2≥1”的否定是“存在x∈R,使得x2<1”.故選:D.【點睛】本題考查含有一個量詞的否定,屬于基礎(chǔ)題.5、B【解析】根據(jù)三角函數(shù)的定義進行求解即可.【詳解】因為角α的終邊過點,所以,,,故選:B6、D【解析】根據(jù)充分、必要條件的知識確定正確選項.【詳解】“”時,若,則,不能得到“”.“”時,若,則,不能得到“”.所以“”是“”的既不充分也不必要條件.故選:D7、A【解析】由題意可知,關(guān)于的二次方程的兩根分別為、,求出、的值,然后利用二次函數(shù)的基本性質(zhì)可求得在區(qū)間上的最小值.【詳解】由題意可知,關(guān)于的二次方程的兩根分別為、,則,解得,則,故當(dāng)時,函數(shù)取得最小值,即.故選:A.8、C【解析】根據(jù)存在量詞命題的否定是全稱量詞命題,選出正確選項.【詳解】因為命題是存在量詞命題,所以其否定是全稱量詞命題,即,.故選:C.9、A【解析】根據(jù)誘導(dǎo)公式計算【詳解】故選:A10、B【解析】先判斷函數(shù)的單調(diào)性,再利用單調(diào)性求解.【詳解】因為,在上都是增函數(shù),由復(fù)合函數(shù)的單調(diào)性知:函數(shù),在上為增函數(shù),所以函數(shù)的值域為,故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)對數(shù)函數(shù)的真數(shù)大于0求解即可.【詳解】函數(shù)有意義,則,解得,所以函數(shù)的定義域為,故答案為:12、【解析】結(jié)合扇形的面積公式即可求出圓心角的大小.【詳解】解:設(shè)圓心角為,半徑為,則,由題意知,,解得,故答案為:13、161【解析】由等差數(shù)列的性質(zhì)可得,即可求出,又,帶入數(shù)據(jù),即可求解【詳解】由等差數(shù)列的性質(zhì)可得=,所以,又由等差數(shù)列前n項和公式得【點睛】本題考查等差數(shù)列的性質(zhì)及前n項和公式,屬基礎(chǔ)題14、①.②.【解析】利用射影定理求得,結(jié)合圖象判斷出的大小關(guān)系.【詳解】在中,由射影定理得,即.在中,由射影定理得,即根據(jù)圖象可知,即.故答案為:;15、【解析】利用指數(shù)的運算法則和對數(shù)的運算法則即求.【詳解】原式.故答案為:.16、【解析】由,根據(jù)三角函數(shù)的誘導(dǎo)公式進行轉(zhuǎn)化求解即可.詳解】,,則,故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)直接利用并集結(jié)果可得,;(2)根據(jù)可得,再對集合的解集情況進行分類討論,即可得答案;【詳解】解:(1);,∴,;(2),∴分情況討論①,即時得;②若,即,中只有一個元素1符合題意;③若,即時得,∴∴綜上【點睛】由集合間的基本關(guān)系求參數(shù)時,注意對可變的集合,分空集和不為空集兩種情況.18、(1);(2)存在,,.【解析】(1)設(shè),由,求出值,可得二次函數(shù)的解析式;(2)分①當(dāng)時,②當(dāng)時,③當(dāng)時,三種情況討論,可得存在滿足條件的,,其中,【詳解】解:(1)依題意,可設(shè),因,代入得,所以.(2)假設(shè)存在這樣m,n,分類討論如下:當(dāng)時,依題意,即兩式相減,整理得,代入進一步得,產(chǎn)生矛盾,故舍去;當(dāng)時,依題意,若,,解得或(舍去);若,,產(chǎn)生矛盾,故舍去;當(dāng)時,依題意,即解得,產(chǎn)生矛盾,故舍去綜上:存在滿足條件的m,n,其中,19、(1),(2)【解析】(1)利用函數(shù)的振幅求得,代入求得的值,從而求得函數(shù),利用對稱性求得函數(shù);(2)利用三角函數(shù)圖像變換求得,由得,利用同角三角函數(shù)的基本關(guān)系式及兩角和與差的三角公式求得結(jié)果.【小問1詳解】解:由振幅為2知,,代入有,,而,而與關(guān)于軸對稱,【小問2詳解】由已知,,,而,故,.20、(1)(2),,,【解析】試題分析:(1)由圖象知,,從而可求得,繼而可求得;(2)利用三角函數(shù)間的關(guān)系可求得,利用余弦函數(shù)的性質(zhì)可求得時的最大值與最小值及相應(yīng)的值試題解析::(1)由圖象知,∴∴圖象過點,則,∵,∴,于是有(2).∵,∴當(dāng),即時,;當(dāng),即時,考點:(1)由的部分圖象求其解析式;(2)正弦函數(shù)的定義域和值域.【方法點晴】本題考查由的部分圖象確定其解析式,考查
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度曹瑞與張麗離婚協(xié)議中公司股權(quán)分割及轉(zhuǎn)讓協(xié)議3篇
- 2024美食盛宴商業(yè)合作伙伴合同版B版
- 2025年度漁業(yè)資源承包與可持續(xù)發(fā)展合同4篇
- 2025年度體育場館食堂承包合同范本3篇
- 2025年度生物科技研發(fā)公司部分股權(quán)出售合同3篇
- 2025年度智慧社區(qū)建設(shè)承包合同股東內(nèi)部經(jīng)營協(xié)議4篇
- 2025年度潯購F000353632生鮮產(chǎn)品展示冰柜采購合同3篇
- 2025年度水產(chǎn)養(yǎng)殖蟲害綜合防控技術(shù)合同4篇
- 職業(yè)教育培訓(xùn)需求分析課件
- 2025年幼兒園食堂承包及幼兒營養(yǎng)餐服務(wù)合同4篇
- 火災(zāi)安全教育觀后感
- 農(nóng)村自建房屋安全協(xié)議書
- 快速康復(fù)在骨科護理中的應(yīng)用
- 國民經(jīng)濟行業(yè)分類和代碼表(電子版)
- ICU患者外出檢查的護理
- 公司收購設(shè)備合同范例
- 廣東省潮州市2023-2024學(xué)年高二上學(xué)期語文期末考試試卷(含答案)
- 2024年光伏發(fā)電項目EPC總包合同
- 子女放棄房產(chǎn)繼承協(xié)議書
- 氧化還原反應(yīng)配平專項訓(xùn)練
- 試卷(完整版)python考試復(fù)習(xí)題庫復(fù)習(xí)知識點試卷試題
評論
0/150
提交評論