2024-2025學(xué)年初中數(shù)學(xué)九年級上冊(華師版)教案 第25章隨機(jī)事件的概率25.2.3列舉所有機(jī)會均等的結(jié)果_第1頁
2024-2025學(xué)年初中數(shù)學(xué)九年級上冊(華師版)教案 第25章隨機(jī)事件的概率25.2.3列舉所有機(jī)會均等的結(jié)果_第2頁
2024-2025學(xué)年初中數(shù)學(xué)九年級上冊(華師版)教案 第25章隨機(jī)事件的概率25.2.3列舉所有機(jī)會均等的結(jié)果_第3頁
2024-2025學(xué)年初中數(shù)學(xué)九年級上冊(華師版)教案 第25章隨機(jī)事件的概率25.2.3列舉所有機(jī)會均等的結(jié)果_第4頁
2024-2025學(xué)年初中數(shù)學(xué)九年級上冊(華師版)教案 第25章隨機(jī)事件的概率25.2.3列舉所有機(jī)會均等的結(jié)果_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第25章隨機(jī)事件的概率25.2隨機(jī)事件的概率3列舉所有機(jī)會均等的結(jié)果教學(xué)目標(biāo)1.掌握用列表法、畫樹狀圖法求簡單事件概率的方法.2.能通過比較概率大小做出合理決策,培養(yǎng)用所學(xué)知識解決實(shí)際問題的能力.教學(xué)重難點(diǎn)重點(diǎn):運(yùn)用列表法和畫樹狀圖法求事件的概率.難點(diǎn):運(yùn)用畫樹狀圖法進(jìn)行列舉,解決較復(fù)雜事件概率的計(jì)算問題.教學(xué)過程復(fù)習(xí)鞏固概率:一個事件發(fā)生的可能性叫做該事件的概率..導(dǎo)入新課【問題1】老師向空中拋擲兩枚同樣的硬幣,如果落地后一正一反,老師贏;如果落地后兩面一樣,你們贏.請問,你們覺得這個游戲公平嗎?(學(xué)生思考,教師引導(dǎo))試求下列事件的概率:(1)兩枚兩面一樣;(2)一枚硬幣正面朝上,一枚硬幣反面朝上.教師:想一想“同時擲兩枚硬幣”與“先后兩次擲一枚硬幣”,這兩種試驗(yàn)的所有可能結(jié)果一樣嗎?學(xué)生:我發(fā)現(xiàn)一樣.(1)兩枚兩面一樣的情況有(正正)(反反);(2)一枚硬幣正面朝上,一枚硬幣反面朝上的情況有(正反)(反正).教師:隨機(jī)事件“同時”與“先后”的關(guān)系:“兩個相同的隨機(jī)事件同時發(fā)生”與“一個隨機(jī)事件先后兩次發(fā)生”的結(jié)果是一樣的.學(xué)生討論,教師總結(jié)引出課題:25.2隨機(jī)事件的概率3列舉所有機(jī)會均等的結(jié)果探究新知探究點(diǎn)用樹狀圖法求復(fù)雜隨機(jī)事件的概率活動1(學(xué)生互動,教師點(diǎn)評)【問題2】拋擲一枚普通硬幣3次.有人說“連續(xù)擲出三個正面”和“先擲出兩個正面,再擲出一個反面”的概率是一樣的.你同意嗎?教師引導(dǎo)分析:對于第1次拋擲,可能出現(xiàn)的結(jié)果是正面或反面;對于第2、3次拋擲也是這樣.而且每次硬幣出現(xiàn)正面或反面的概率都相等,因此可以畫出樹狀圖.【探究】拋擲一枚普通硬幣3次,共有多少種機(jī)會均等的結(jié)果?求出P(正正正)=,P(正正反)=,所以P(正正正)=P(正正反).【答案】同意問題2中的說法【繼續(xù)思考】(學(xué)生互動,教師點(diǎn)評)教師:有的同學(xué)認(rèn)為:拋擲三枚普通硬幣,硬幣落地后只可能出現(xiàn)4種結(jié)果:(1)全是正面;(2)兩正一反;(3)兩反一正;(4)全是反面.因此這四個事件出現(xiàn)的概率相等.你同意這種說法嗎?為什么?學(xué)生回答:三枚硬幣落地后出現(xiàn)8種可能結(jié)果,其中全是正面1種,兩正一反出現(xiàn)3種,兩反一正出現(xiàn)3種,全是反面出現(xiàn)1種.所以P(正正正)=,P(兩正一反)=,P(兩反一正)=,P(反反反)=.因此這四個事件出現(xiàn)的概率不全相等.所以不同意.教師:每次拋擲,出現(xiàn)正面或反面的概率都相等,事件出現(xiàn)的可能性要寫全,避免重復(fù)和遺漏,在參與中要獨(dú)立思考,提高自己解決問題的能力.【總結(jié)】(老師總結(jié))用樹狀圖能從上到下,列舉所有機(jī)會均等的結(jié)果,可以幫助我們分析問題,而且可以避免重復(fù)和遺漏,既直觀又條理分明.活動2(學(xué)生互動,教師點(diǎn)評)典例講解(小組討論,老師點(diǎn)評)假定甲、乙兩人每次都是等可能地做這三種手勢,那么一次比賽時兩人做同種手勢(即不分勝負(fù))的概率是多少?(學(xué)生)【解】畫出樹狀圖如圖所示.所有機(jī)會均等的結(jié)果有9種,其中的3種——(石頭,石頭)、(剪刀,剪刀)、(布,布)是我們關(guān)注的結(jié)果,所以P(教師:試一試,請用列表法分析問題1,看看所得結(jié)論是否一致.教師:想一想,什么時候用列表法方便,什么時候用樹狀圖法方便?學(xué)生:當(dāng)一次試驗(yàn)涉及兩個元素,且可能出現(xiàn)的結(jié)果較多時,為了不重復(fù)不遺漏地列出所有可能的結(jié)果,通常用列表法;當(dāng)一次試驗(yàn)涉及3個或3個以上的元素時,列表法就不方便了,為了不重復(fù)不遺漏地列出所有可能的結(jié)果,通常用樹狀圖法.教師給予鼓勵.例2經(jīng)過某十字路口的汽車,可能繼續(xù)直行,也可能向左或向右轉(zhuǎn),如果這三種可能性的大小相同.三輛汽車經(jīng)過這個十字路口,求下列事件的概率:(1)三輛汽車?yán)^續(xù)直行;(2)兩輛車向右轉(zhuǎn),一輛車向左轉(zhuǎn);(3)至少有兩輛車向左轉(zhuǎn).

【解】畫樹狀圖如圖所示:由樹狀圖可知,一共有27種等可能的結(jié)果.(1)∵三輛汽車?yán)^續(xù)直行的有1種,∴三輛汽車?yán)^續(xù)直行的概率為.(2)∵兩輛車向右轉(zhuǎn),一輛車向左轉(zhuǎn)的有3種,∴兩輛車向右轉(zhuǎn),一輛車向左轉(zhuǎn)的概率為=.(3)∵至少有兩輛車向左轉(zhuǎn)的有7種,∴至少有兩輛車向左轉(zhuǎn)的概率為.【題后總結(jié)】在一次試驗(yàn)中,如果可能出現(xiàn)的結(jié)果比較多,且各種結(jié)果出現(xiàn)的可能性相等,那么我們可以利用樹狀圖或表格不重復(fù)、不遺漏地列出所有可能的結(jié)果,從而求出某些事件發(fā)生的概率.活動3:【即學(xué)即練】(小組討論,老師點(diǎn)評)甲、乙兩人玩擲骰子游戲,規(guī)定兩人分別拋擲一枚骰子,向上的點(diǎn)數(shù)之和為奇數(shù),則甲獲勝;向上的點(diǎn)數(shù)之和為偶數(shù),則乙獲勝.你認(rèn)為這個游戲的規(guī)則公平嗎?為什么?解:列表如下:乙和甲123456123456723456783456789456789105678910116789101112由表可知,一共有36種等可能結(jié)果,其中和為奇數(shù)的有18種,和為偶數(shù)的有18種,所以P(甲獲勝)=1836=12,P(乙獲勝)=1836=12,因?yàn)镻(甲獲勝)=P【思考】利用樹狀圖或表格的優(yōu)點(diǎn)是什么?什么時候用樹狀圖比較方便?什么時候用表格比較方便?(學(xué)生總結(jié),教師點(diǎn)評)當(dāng)試驗(yàn)包含兩步時,列表和畫樹狀圖都可以,當(dāng)試驗(yàn)包含三步或三步以上時,畫樹狀圖比較方便.【總結(jié)】1.列表法就是把要求的對象用表格一一表示出來分析求解的方法.當(dāng)一次試驗(yàn)要涉及兩個元素,并且可能出現(xiàn)的結(jié)果數(shù)目較多時,為了不重不漏地列出所有可能的結(jié)果,通常采用列表的方法.2.當(dāng)一次試驗(yàn)要涉及兩個以上元素,并且可能出現(xiàn)的結(jié)果數(shù)目較多時,為了不重不漏地列出所有可能的結(jié)果,通常采用畫樹狀圖的方法.課堂練習(xí)1.如圖,用飛鏢投一個被平均分成6份的圓形靶子,那么飛鏢落在陰影部分的概率是()A.16 B.13 C.122.三張外觀相同的卡片分別標(biāo)有數(shù)字1、2、3,從中隨機(jī)一次抽出兩張,這兩張卡片上的數(shù)字恰好都小于3的概率是()A.13 B.23 C.13.用數(shù)字1、2、3,組成三位數(shù),求其中恰有2個相同的數(shù)字的概率.4.甲口袋中裝有2個小球,1個紅球、1個白球;乙口袋中裝有3個小球,1個紅球、1個白球、1個黑球;丙口袋中裝有2個小球,1個紅球、1個黑球,這些小球除顏色外其余均相同.從3個口袋中各隨機(jī)地取出1個小球.求下列事件的概率:(1)取出的3個小球顏色均不同;(2)取出的3個小球有兩個顏色相同;(3)取出的3個小球顏色全部相同.參考答案1.C【解析】P(飛鏢落在陰影部分)=36=12.A【解析】畫樹狀圖如圖所示共有6種等可能的結(jié)果,而兩張卡片上的數(shù)字恰好都小于3有2種情況,所以P(兩張卡片上的數(shù)字恰好都小于3)==.3.【解】由樹狀圖可以看出,所有可能的結(jié)果有27種,它們出現(xiàn)的可能性相等.其中恰有2個數(shù)字相同的結(jié)果有18個.∴P(恰有兩個數(shù)字相同)==.4.【解】畫樹狀圖如下,由樹狀圖可以看出,所有可能的結(jié)果有12種,它們出現(xiàn)的可能性相等.(1)P(顏色均不相同)==.(2)P(有兩個顏色相同)==.(3)P(顏色全部相同)=.課堂小結(jié)(學(xué)生總結(jié),老師點(diǎn)評)畫樹狀圖1.畫樹狀圖的步驟:①關(guān)鍵要弄清楚每一步有幾種結(jié)果;②在樹狀圖下面對應(yīng)寫著所有可能的結(jié)果;③利用概率公式進(jìn)行計(jì)算.2.適用條件:當(dāng)試驗(yàn)包含兩步時,列表法比較方便,當(dāng)然,此時也可以用樹狀圖法,當(dāng)試驗(yàn)在三步或三步以上時,用樹狀圖法方便.3.畫樹狀圖注意:①弄清試驗(yàn)涉及試驗(yàn)元素個數(shù)或試驗(yàn)步驟分幾步;②在摸球試驗(yàn)中一定要弄清“放回”還是“不放回”.布置作業(yè)教材第153頁練習(xí)題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論