版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共8頁2025屆山東省棗莊市薛城區(qū)數(shù)學九年級第一學期開學質(zhì)量檢測模擬試題題號一二三四五總分得分A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)平行四邊形、矩形、菱形、正方形都具有的是()A.對角線互相平分B.對角線互相垂直C.對角線相等D.對角線互相垂直且相等2、(4分)如圖,△ABC的周長為17,點D,E在邊BC上,∠ABC的平分線垂直于AE,垂足為點N,∠ACB的平分線垂直于AD,垂足為點M,若BC6,則MN的長度為()A. B.2 C. D.33、(4分)如圖,四邊形ABCD是平行四邊形,要使它成為矩形,那么需要添加的條件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD4、(4分)若,則下列不等式不成立的是()A. B. C. D.5、(4分)下列曲線中不能表示y與x的函數(shù)的是()A. B. C. D.6、(4分)一次函數(shù)的圖象如圖所示,當時,則的取值范圍是()A. B. C. D.7、(4分)如圖,將△ABC繞點A逆時針旋轉(zhuǎn)110°,得到△ADE,若點D落在線段BC的延長線上,則∠B大小為()A.30° B.35° C.40° D.45°8、(4分)關于函數(shù)y=﹣x﹣2的圖象,有如下說法:①圖象過點(0,﹣2)②圖象與x軸的交點是(﹣2,0)③由圖象可知y隨x的增大而增大④圖象不經(jīng)過第一象限⑤圖象是與y=﹣x+2平行的直線,其中正確說法有()A.5個B.4個C.3個D.2個二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)如圖,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=10,將△ABC沿CB方向向右平移得到△DEF.若四邊形ABED的面積為20,則平移距離為___________.10、(4分)2名男生和2名女生抓鬮分派2張電影票,恰好2名女生得到電影票的概率是.11、(4分)如圖,將邊長為8的正方形ABCD折疊,使點D落在BC邊的中點E處,點A落在F處,折痕為MN,則線段CN的長為____.12、(4分)如圖,正方形的邊長為5,,連結(jié),則線段的長為________.13、(4分)甲、乙兩人進行射擊測試,每人射擊10次.射擊成績的平均數(shù)相同,射擊成績的方差分別為S甲2=5,S乙2=3.5,則射擊成績比較穩(wěn)定的是_____(填“甲”或“乙“).三、解答題(本大題共5個小題,共48分)14、(12分)如圖:反比例函數(shù)的圖象與一次函數(shù)的圖象交于、兩點,其中點坐標為.(1)求反比例函數(shù)與一次函數(shù)的表達式;(2)觀察圖象,直接寫出當時,自變量的取值范圍;(3)一次函數(shù)的圖象與軸交于點,點是反比例函數(shù)圖象上的一個動點,若,求此時點的坐標.15、(8分)學校準備假期組織學生去北京研學,現(xiàn)有甲、乙兩家旅行社表示對學生研學團隊優(yōu)惠.設參加研學的學生有x人,甲、乙兩家旅行社實際收費分別為元,元,且它們的函數(shù)圖象如圖所示,根據(jù)圖象信息,請你回答下列問題:(1)根據(jù)圖象直接寫出當參加研學的學生人數(shù)為多少時,兩家旅行社收費相同?(2)當參加老師的人數(shù)為多少人時,選擇甲旅行社合算?(3)如果共有50人參加時,通過計算說明選擇哪家旅行社合算?16、(8分)解分式方程或化簡求值(1);(2)先化簡,再求值:,其中.17、(10分)如圖平面直角坐標系中,點,在軸上,,點在軸上方,,,線段交軸于點,,連接,平分,過點作交于.(1)點的坐標為.(2)將沿線段向右平移得,當點與重合時停止運動,記與的重疊部分面積為,點為線段上一動點,當時,求的最小值;(3)當移動到點與重合時,將繞點旋轉(zhuǎn)一周,旋轉(zhuǎn)過程中,直線分別與直線、直線交于點、點,作點關于直線的對稱點,連接、、.當為直角三角形時,直接寫出線段的長.18、(10分)如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點和點.(1)求,的值;(2)根據(jù)圖象判斷,當不等式成立時,的取值范圍是什么?B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)如圖,菱形ABCD中,點O為對角線AC的三等分點且AO=2OC,連接OB,OD,OB=OC=OD,已知AC=3,那么菱形的邊長為_____.20、(4分)寫出一個經(jīng)過點,且y隨x的增大而減小的一次函數(shù)的關系式:______.21、(4分)如圖,梯形ABCD中,AD∥BC,AD=6BC=14,P、Q分別為BD、AC的中點,則PQ=____.22、(4分)函數(shù)y=36x-10的圖象經(jīng)過第______象限.23、(4分)已知A(﹣2,2),B(2,3),若要在x軸上找一點P,使AP+BP最短,此時點P的坐標為_____二、解答題(本大題共3個小題,共30分)24、(8分)因式分解:am2﹣6ma+9a.25、(10分)《九章算術》卷九“勾股”中記載:今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適與岸齊.問霞長幾何.注釋:今有正方形水池邊長1丈,蘆葦生長在中央,長出水面1尺.將蘆葦向池岸牽引,恰好與水岸齊,問蘆葦?shù)拈L度(一丈等于10尺).解決下列問題:(1)示意圖中,線段的長為______尺,線段的長為______尺;(2)求蘆葦?shù)拈L度.26、(12分)計算:(1)(2)
參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、A【解析】試題分析:平行四邊形的對角線互相平分,而對角線相等、平分一組對角、互相垂直不一定成立.故平行四邊形、矩形、菱形、正方形都具有的性質(zhì)是:對角線互相平分.故選A.考點:特殊四邊形的性質(zhì)2、C【解析】
證明,得到,即是等腰三角形,同理是等腰三角形,根據(jù)題意求出,根據(jù)三角形中位線定理計算即可.【詳解】平分,,,,在和中,,,,是等腰三角形,同理是等腰三角形,點是中點,點是中點(三線合一),是的中位線,,,.故選.本題考查的是三角形中位線定理、等腰三角形的性質(zhì),掌握三角形的中位線平行于第三邊,并且等于第三邊的一半是解題的關鍵.3、D【解析】
可根據(jù)對角線相等的平行四邊形是矩形證明四邊形ABCD是矩形.【詳解】解:A、AB=CD,當ABCD是平行四邊形時也成立,故不合符題意;B、AD=BC,當ABCD是平行四邊形時也成立,故不合符題意;C、AB=BC,當ABCD是菱形時也成立,故不合符題意;D、AC=BD,對角線相等的平行四邊形是矩形,符合題意;故選:D.此題主要考查了矩形的判定,關鍵是矩形的判定:①矩形的定義:有一個角是直角的平行四邊形是矩形;②有三個角是直角的四邊形是矩形;③對角線相等的平行四邊形是矩形.4、C【解析】
直接根據(jù)不等式的性質(zhì)進行分析判斷即可得到答案.【詳解】A.,則a是負數(shù),可以看成是5<6兩邊同時加上a,故A選項成立,不符合題意;B.是不等式5<6兩邊同時減去a,不等號不變,故B選項成立,不符合題意;C.5<6兩邊同時乘以負數(shù)a,不等號的方向應改變,應為:,故選項C不成立,符合題意;D.是不等式5<6兩邊同時除以a,不等號改變,故D選項成立,不符合題意.故選C.本題考查的實際上就是不等式的基本性質(zhì):不等式的兩邊都加上(或減去)同一個數(shù)(或式子)不等號的方向不變;不等式兩邊同乘以(或除以)同一個正數(shù),不等號的方向不變;不等式兩邊同乘以(或除以)同一個負數(shù),不等號的方向改變.5、C【解析】
函數(shù)是在一個變化過程中有兩個變量x,y,一個x只能對應唯一一個y.【詳解】當給x一個值時,y有唯一的值與其對應,就說y是x的函數(shù),x是自變量.選項C中的圖形中對于一個自變量的值,圖象就對應兩個點,即y有兩個值與x的值對應,因而不是函數(shù)關系.函數(shù)圖像的判斷題,只需過每個自變量在x軸對應的點,作垂直x軸的直線觀察與圖像的交點,有且只有一個交點則為函數(shù)圖象。6、C【解析】
函數(shù)經(jīng)過點(0,3)和(1,-3),根據(jù)一次函數(shù)是直線,且這個函數(shù)y隨x的增大而減小,即可確定.【詳解】解:函數(shù)經(jīng)過點(0,3)和(1,-3),則當-3<y<3時,x的取值范圍是:0<x<1.故選:C.認真體會一次函數(shù)與一元一次不等式(組)之間的內(nèi)在聯(lián)系.理解一次函數(shù)的增減性是解決本題的關鍵.7、B【解析】
由旋轉(zhuǎn)性質(zhì)等到△ABD為等腰三角形,利用內(nèi)角和180°即可解題.【詳解】解:由旋轉(zhuǎn)可知,∠BAD=110°,AB=AD∴∠B=∠ADB,∠B=(180°-110°)2=35°,故選B.本題考查了等腰三角形的性質(zhì),三角形的內(nèi)角和,屬于簡單題,熟悉旋轉(zhuǎn)的性質(zhì)是解題關鍵.8、B【解析】試題分析:根據(jù)一次函數(shù)的性質(zhì)和圖象上點的坐標特征解答.解:①將(0,﹣2)代入解析式得,左邊=﹣2,右邊=﹣2,故圖象過(0,﹣2)點,正確;②當y=0時,y=﹣x﹣2中,x=﹣2,故圖象過(﹣2,0),正確;③因為k=﹣1<0,所以y隨x增大而減小,錯誤;④因為k=﹣1<0,b=﹣2<0,所以圖象過二、三、四象限,正確;⑤因為y=﹣x﹣2與y=﹣x的k值(斜率)相同,故兩圖象平行,正確.故選B.考點:一次函數(shù)的性質(zhì).二、填空題(本大題共5個小題,每小題4分,共20分)9、1【解析】
先根據(jù)含30度的直角三角形三邊的關系得到AC,再根據(jù)平移的性質(zhì)得AD=BE,ADBE,于是可判斷四邊形ABED為平行四邊形,則根據(jù)平行四邊形的面積公式得到BE的方程,則可計算出BE=1,即得平移距離.【詳解】解:在Rt△ABC中,∵∠ABC=30°,∴AC=AB=5,∵△ABC沿CB向右平移得到△DEF,∴AD=BE,ADBE,∴四邊形ABED為平行四邊形,∵四邊形ABED的面積等于20,∴AC?BE=20,即5BE=20,∴BE=1,即平移距離等于1.故答案為:1.本題考查了含30°角的直角三角形的性質(zhì),平移的性質(zhì):把一個圖形整體沿某一直線方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同;新圖形中的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應點.連接各組對應點的線段平行且相等.也考查了平行四邊形的判定與性質(zhì).10、.【解析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與恰好2名女生得到電影票的情況,再利用概率公式求解即可求得答案.解:畫樹狀圖得:∵共有12種等可能的結(jié)果,恰好2名女生得到電影票的有2種情況,∴恰好2名女生得到電影票的概率是:=.故答案為:.11、3【解析】
根據(jù)折疊的性質(zhì),只要求出DN就可以求出NE,在直角△CEN中,若設CN=x,則DN=NE=8-x,CE=4,根據(jù)勾股定理就可以列出方程,從而解出CN的長.【詳解】設CN=x,則DN=8-x,由折疊的性質(zhì)知EN=DN=8-x,而EC=12BC=4,在Rt△ECN中,由勾股定理可知EN2整理得16x=48,所以x=1.故答案為:1.本題考查翻折變換、正方形的性質(zhì)、勾股定理等知識,解題的關鍵是設未知數(shù)利用勾股定理列出方程解決問題,屬于中考??碱}型.12、【解析】
延長BG交CH于點E,根據(jù)正方形的性質(zhì)證明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2、HE=CH-CE=2、∠HEG=90°,由勾股定理可得GH的長.【詳解】解:如圖,延長BG交CH于點E,
∵正方形的邊長為5,,∴AG2+BG2=AB2,∴∠AGB=90°,在△ABG和△CDH中,∴△ABG≌△CDH(SSS),
∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,
∴∠1+∠2=90°,∠5+∠6=90°,
又∵∠2+∠3=90°,∠4+∠5=90°,
∴∠1=∠3=∠5,∠2=∠4=∠6,
在△ABG和△BCE中,∴△ABG≌△BCE(ASA),
∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°,
∴GE=BE-BG=4-3=1,
同理可得HE=1,
在RT△GHE中,故答案為:本題主要考查正方形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理及其逆定理的綜合運用,通過證三角形全等得出△GHE為等腰直角三角形是解題的關鍵.13、乙.【解析】
根據(jù)方差反應了數(shù)據(jù)的波動情況,即可完成作答?!驹斀狻拷猓阂驗镾甲2=5>S乙2=3.5,即乙比較穩(wěn)定,故答案為:乙。本題考查了方差在數(shù)據(jù)統(tǒng)計中的作用,即方差是反映數(shù)據(jù)波動大小的量。三、解答題(本大題共5個小題,共48分)14、(1),;(2)或;(3)(12,)或(-12,)【解析】
(1)把A點坐標代入中求出k得到反比例函數(shù)解析式,把A點坐標代入中求出b得到一次函數(shù)解析式;(2)由函數(shù)圖象,寫出一次函數(shù)圖象在反比例函數(shù)圖象上方所對應的自變量的范圍即可;(3)設P(x,),先利用一次解析式解析式確定C(0,1),再根據(jù)三角形面積公式得到,然后解絕對值方程得到x的值,從而得到P點坐標.【詳解】解:(1)把A(1,2)代入得k=2,∴反比例函數(shù)解析式為,把A(1,2)代入得,解得,∴一次函數(shù)解析式為;(2)由函數(shù)圖象可得:當y1<y2時,-2<x<0或x>1;(3)設P(x,),當x=0時,,∴C(0,1),∵S△OCP=6,∴,解得,∴P(12,)或(-12,).本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標,把兩個函數(shù)關系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.也考查了待定系數(shù)法求函數(shù)解析式.15、(1)30人;(2)當有30人以下時,y<y,所以選擇甲旅行社合算;;(3)當人時,乙旅行社合算.【解析】
(1)當兩函數(shù)圖象相交時,兩家旅行社收費相同,由圖象即可得出答案.(2)由圖象比較收費y、y,即可得出答案.(3)結(jié)合圖形進行解答,當有50人時,比較收費y、y,即可得出答案.【詳解】(1)當兩函數(shù)圖象相交時,兩家旅行社收費相同,由圖象知為30人;(2)由圖象知:當有30人以下時,y<y,所以選擇甲旅行社合算;(3)觀察圖象,當x>30時,y的圖象在y的下方,即y<y,∴當一共有50人參加時,應選擇乙旅行社合算.;此題考查一次函數(shù)與二元一次方程(組),解題關鍵在于結(jié)合函數(shù)圖象進行解答.16、;.【解析】
(1)將方程右邊的式子提取-1變形后,方程兩邊同時乘以2x-1,去分母后求出x的值,將x的代入最簡公分母檢驗,即可得到原分式方程的解;(2)將原式被除數(shù)括號中兩項通分并利用同分母分式的加法法則計算,同時利用除以一個數(shù)等于乘以這個數(shù)的倒數(shù)將除法運算化為乘法運算,約分得到最簡結(jié)果,把x的值代入化簡后的式子中計算,即可得到原式的值.【詳解】(1)x=2(2x-1)+3x-4x=3-2-3x=1(2)===把代入原式=.考查了分式的化簡求值,以及分式方程的解法,分式的加減運算關鍵是通分,通分的關鍵是找最簡公分母;分式的乘除運算關鍵是約分,約分的關鍵是找公因式,約分時,分式的分子分母出現(xiàn)多項式,應將多項式分解因式后再約分.17、(1)C(3,3);(3)最小值為3+3;(3)D3H的值為3-3或3+3或1-1或1+1.【解析】
(1)想辦法求出A,D,B的坐標,求出直線AC,BC的解析式,構(gòu)建方程組即可解決問題.
(3)如圖3中,設BD交O′D′于G,交A′D′于F.作PH⊥OB于H.利用三角形的面積公式求出點D坐標,再證明PH=PB,把問題轉(zhuǎn)化為垂線段最短即可解決問題.
(3)在旋轉(zhuǎn)過程中,符號條件的△GD3H有8種情形,分別畫出圖形一一求解即可.【詳解】(1)如圖1中,
在Rt△AOD中,∵∠AOD=93°,∠OAD=33°,OD=3,
∴OA=OD=6,∠ADO=63°,
∴∠ODC=133°,
∵BD平分∠ODC,
∴∠ODB=∠ODC=63°,
∴∠DBO=∠DAO=33°,
∴DA=DB=1,OA=OB=6,
∴A(-6,3),D(3,3),B(6,3),
∴直線AC的解析式為y=x+3,
∵AC⊥BC,
∴直線BC的解析式為y=-x+6,
由,解得,
∴C(3,3).
(3)如圖3中,設BD交O′D′于G,交A′D′于F.作PH⊥OB于H.
∵∠FD′G=∠D′GF=63°,
∴△D′FG是等邊三角形,
∵S△D′FG=,
∴D′G=,
∴DD′=GD′=3,
∴D′(3,3),
∵C(3,3),
∴CD′==3,
在Rt△PHB中,∵∠PHB=93°,∠PBH=33°,
∴PH=PB,
∴CD'+D'P+PB=3+D′P+PH≤3+D′O′=3+3,
∴CD'+D'P+PB的最小值為3+3.
(3)如圖3-1中,當D3H⊥GH時,連接ED3.
∵ED=ED3,EG=EG.DG=D3G,
∴△EDG≌△ED3G(SSS),
∴∠EDG=∠ED3G=33°,∠DEG=∠D3EG,
∵∠DEB=133°,∠A′EO′=63°,
∴∠DEG+∠BEO′=63°,
∵∠D3EG+∠D3EO′=63°,
∴∠D3EO′=∠BEO′,
∵ED3=EB,E=EH,
∴△EO′D3≌△EO′B(SAS),
∴∠ED3H=∠EBH=33°,HD3=HB,
∴∠CD3H=63°,
∵∠D3HG=93°,
∴∠D3GH=33°,設HD3=BH=x,則DG=GD3=3x,GH=x,
∵DB=1,
∴3x+x+x=1,
∴x=3-3.
如圖3-3中,當∠D3GH=93°時,同法可證∠D3HG=33°,易證四邊形DED3H是等腰梯形,
∵DE=ED3=DH=1,可得D3H=1+3×1×cos33°=1+1.
如圖3-3中,當D3H⊥GH時,同法可證:∠D3GH=33°,
在△EHD3中,由∠D3HE=15°,∠HD3E=33°,ED3=1,可得D3H=1×,
如圖3-1中,當DG⊥GH時,同法可得∠D3HG=33°,
設DG=GD3=x,則HD3=BH=3x,GH=x,
∴3x+x=1,
∴x=3-3,
∴D3H=3x=1-1.
如圖3-5中,當D3H⊥GH時,同法可得D3H=3-3.
如圖3-6中,當DGG⊥GH時,同法可得D3H=1+1.
如圖3-7中,如圖當D3H⊥HG時,同法可得D3H=3+3.
如圖3-8中,當D3G⊥GH時,同法可得HD3=1-1.
綜上所述,滿足條件的D3H的值為3-3或3+3或1-1或1+1.此題考查幾何變換綜合題,解直角三角形,旋轉(zhuǎn)變換,一次函數(shù)的應用,等邊三角形的判定和性質(zhì),垂線段最短,全等三角形的判定和性質(zhì)等知識,解題的關鍵是學會構(gòu)建一次函數(shù)確定交點坐標,學會用分類討論的思想思考問題.18、(1),;(2)或.【解析】
(1)利用待定系數(shù)法即可解決問題;(2)觀察圖象寫出反比例函數(shù)圖象在一次函數(shù)的圖象上方的x的取值范圍即可.【詳解】解:(1)把A(1,1)代入中,得到m=1,∴反比例函數(shù)的解析式為y=,把B(n,1)代入y=中,得到n=1;(2)∵A(1,1),B(1,1),觀察圖象可知:不等式成立時,x的取值范圍是0<x≤1或x≥1.本題考查一次函數(shù)與反比例函數(shù)的交點問題,解題的關鍵是靈活應用待定系數(shù)法確定函數(shù)解析式,學會利用圖象法解決取值范圍問題,屬于中考??碱}型.一、填空題(本大題共5個小題,每小題4分,共20分)19、.【解析】
如圖,連接BD交AC于E,由四邊形ABCD是菱形,推出AC⊥BD,AE=EC,在Rt△EOD中,利用勾股定理求出DE,在Rt△ADE中利用勾股定理求出AD即可.【詳解】如圖,連接BD交AC于E.∵四邊形ABCD是菱形,∴AC⊥BD,AE=EC,∵OA=2OC,AC=3,∴CO=DO=2EO=1,AE=,∴EO=,DE=EB=,∴AD=.故答案為.本題考查菱形的性質(zhì)、勾股定理等知識,解題的關鍵是靈活應用勾股定理解決問題.20、y=-x-1【解析】
可設,由增減性可取,再把點的坐標代入可求得答案.【詳解】設一次函數(shù)解析式為,隨的增大而減小,,故可取,解析式為,函數(shù)圖象過點,,解得,.故答案為:(注:答案不唯一,只需滿足,且經(jīng)過的一次函數(shù)即可).本題有要考查一次函數(shù)的性質(zhì),掌握“在中,當時隨的增大而增大,當時隨的增大而減小”是解題的關鍵.21、1.【解析】
首先連接DQ,并延長交BC于點E,易證得△ADQ≌△CEQ(ASA),即可求得DQ=EQ,CE=AD=6,繼而可得PQ是△DBE的中位線,則可求得答案.【詳解】解:連接DQ,并延長交BC于點E,
∵AD∥BC,
∴∠DAQ=∠ECQ,
在△ADQ和△CEQ中,
,
∴△ADQ≌△CEQ(ASA),
∴DQ=EQ,CE=AD=6,
∴BE=BC-CE=11-6=8,
∵BP=DP,
∴PQ=BE=1.
故答案為:1.本題考查梯形的性質(zhì)、全等三角形的判定與性質(zhì)以及三角形的中位線的性質(zhì).注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應用.22、【解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025服裝連鎖加盟合同樣本
- 2025海上運輸合同模板書
- 二零二五年度車輛轉(zhuǎn)讓與道路救援服務合同3篇
- 二零二五年度股權(quán)投資公司股東合作協(xié)議3篇
- 二零二五年度文化產(chǎn)業(yè)發(fā)展全新期權(quán)合同3篇
- 2025年度養(yǎng)羊產(chǎn)業(yè)人才培養(yǎng)與交流合作協(xié)議3篇
- 二零二五年度生態(tài)保護公益合作合同3篇
- 2025年度虛擬現(xiàn)實合伙人股權(quán)分配與內(nèi)容開發(fā)合同3篇
- 二零二五年度生態(tài)農(nóng)業(yè)用地農(nóng)村房屋買賣合同協(xié)議書
- 2025年度農(nóng)村自建房包工與智能安防系統(tǒng)安裝合同
- 大班春季班級工作計劃下學期
- 2024年重慶鐵路投資集團有限公司招聘筆試沖刺題(帶答案解析)
- 研學教育項目商業(yè)計劃書
- MOOC 創(chuàng)新思維與創(chuàng)業(yè)實驗-東南大學 中國大學慕課答案
- 新生兒先心病篩查工作計劃
- 新能源汽車研發(fā)合作協(xié)議書
- 四川省成都市2023-2024學年高二上學期期末校級調(diào)研聯(lián)考數(shù)學試題【含答案解析】
- 4s店管理的年度工作總結(jié)
- 中醫(yī)護理查房脅痛好
- 新概念英語第一冊1-72課測試
- 類風濕關節(jié)炎課件
評論
0/150
提交評論