




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
DigitalImageProcessingWaveletandMultiresolutionProcessing
MultiresolutionAnalysisManysignalsorimagescontainfeaturesatvariouslevelsofdetail(i.e.,scales). Smallsizeobjectsshouldbeexaminedatahigh
resolution.Largesizeobjectsshouldbeexaminedatalow
resolution.MultiresolutionAnalysis(cont’d)Localimagestatisticsarequitedifferentfromglobalimagestatistics.Modelingentireimageisdifficultorimpossible.Needtoanalyzeimagesatmultiplelevelsofdetail.Transform:AmathematicaloperationthattakesafunctionorsequenceandmapsitintoanotheroneTransformsaregoodthingsbecause…Thetransformofafunctionmaygiveadditional/hiddeninformationabouttheoriginalfunction,whichmaynotbeavailable/obviousotherwiseThetransformofanequationmaybeeasiertosolvethantheoriginalequationThetransformofafunction/sequencemayrequirelessstorage,henceprovidedatacompression/reductionAnoperationmaybeeasiertoapplyonthetransformedfunction,ratherthantheoriginalfunction(recallconvolution)Introduction(RobiPolikar,RowanUniversity)
WhatisaTransformandWhydoWeNeedOne?Mostusefultransformsare:Linear:wecanpulloutconstants,andapplysuperpositionOne-to-one:differentfunctionshavedifferenttransformsInvertible:foreachtransformT,thereisaninversetransformT-1usingwhichtheoriginalfunctionfcanberecovered(kindof–sortoftheundobutton…)Continuoustransform:mapfunctionstofunctionsDiscretetransform:mapsequencestosequencesTfFT-1fIntroduction
PropertiesofTransformsComplexfunctionrepresentationthroughsimplebuildingblocksCompressedrepresentationthroughusingonlyafewblocks(calledbasisfunctions/kernels)Sinusoidsasbuildingblocks:FouriertransformFrequencydomainrepresentationofthefunctionIntroduction
WhatDoesaTransformLookLike?FourierseriesContinuousFouriertransformLaplacetransformDiscreteFouriertransformZ-transformIntroduction
WhatTransformsareAvailable?JeanB.JosephFourier(1768-1830)“Anarbitraryfunction,continuousorwithdiscontinuities,definedinafiniteintervalbyanarbitrarilycapriciousgraphcanalwaysbeexpressedasasumofsinusoids” J.B.J.FourierDecember,21,1807Introduction
FourierWho…?RecallthatFTusescomplexexponentials(sinusoids)asbuildingblocks.Foreachfrequencyofcomplexexponential,thesinusoidatthatfrequencyiscomparedtothesignal.Ifthesignalconsistsofthatfrequency,thecorrelationishighlargeFTcoefficients.Ifthesignaldoesnothaveanyspectralcomponentatafrequency,thecorrelationatthatfrequencyislow/zero,small/zeroFTcoefficient.Introduction
HowDoesFTWorkAnyway?Introduction
FTatWorkFFFIntroduction
FTatWorkFIntroduction
FTatWorkComplexexponentials(sinusoids)asbasisfunctions:FAnultrasonicA-scanusing1.5MHztransducer,sampledat10MHzIntroduction
FTatWorkFTidentifiesallspectralcomponentspresentinthesignal,howeveritdoesnotprovideanyinformationregardingthetemporal(time)localizationofthesecomponents.Why?StationarysignalsconsistofspectralcomponentsthatdonotchangeintimeallspectralcomponentsexistatalltimesnoneedtoknowanytimeinformationFTworkswellforstationarysignalsHowever,non-stationarysignalsconsistsoftimevaryingspectralcomponentsHowdowefindoutwhichspectralcomponentappearswhen?FTonlyprovideswhatspectralcomponentsexist
,notwhereintimetheyarelocated.NeedsomeotherwaystodeterminetimelocalizationofspectralcomponentsIntroduction
StationaryandNon-stationarySignalsStationarysignals’spectralcharacteristicsdonotchangewithtimeNon-stationarysignalshavetimevaryingspectraConcatenationIntroduction
StationaryandNon-stationarySignals5Hz25Hz50HzPerfectknowledgeofwhatfrequenciesexist,butnoinformationaboutwherethesefrequenciesarelocatedintimeIntroduction
Non-stationarySignalsComplexexponentialsstretchouttoinfinityintimeTheyanalyzethesignalglobally,notlocallyHence,FTcanonlytellwhatfrequenciesexistintheentiresignal,butcannottell,atwhattimeinstancesthesefrequenciesoccurInordertoobtaintimelocalization
ofthespectralcomponents,thesignalneedtobeanalyzedlocally,BUTHOW?Introduction
FTShortcomingsChooseawindowfunctionoffinitelengthPutthewindowontopofthesignalatt=0TruncatethesignalusingthiswindowComputetheFTofthetruncatedsignal,save.SlidethewindowtotherightbyasmallamountGotostep3,untilwindowreachestheendofthesignalForeachtimelocationwherethewindowiscentered,weobtainadifferentFTHence,eachFTprovidesthespectralinformationofaseparatetime-sliceofthesignal,providingsimultaneoustimeandfrequencyinformationIntroduction
ShortTimeFourierTransform(STFT)Introduction
ShortTimeFourierTransform(STFT)STFTofsignalx(t):Computedforeachwindowcenteredatt=t’TimeparameterFrequencyparameterSignaltobeanalyzedWindowingfunctionWindowingfunctioncenteredatt=t’FTKernel(basisfunction)Introduction
ShortTimeFourierTransform(STFT)0100200300-1.5-1-0.500.510100200300-1.5-1-0.500.510100200300-1.5-1-0.500.510100200300-1.5-1-0.500.51WindowedsinusoidallowsFTtobecomputedonlythroughthesupportofthewindowingfunctionIntroduction
STFTatWorkIntroduction
STFT300Hz200Hz100Hz50HzSTFTprovidesthetimeinformationbycomputingadifferentFTsforconsecutivetimeintervals,andthenputtingthemtogetherTime-FrequencyRepresentation(TFR)Maps1-Dtimedomainsignalsto2-Dtime-frequencysignalsConsecutivetimeintervalsofthesignalareobtainedbytruncatingthesignalusingaslidingwindowingfunctionHowtochoosethewindowingfunction?Whatshape?Rectangular,Gaussian,Elliptic…?Howwide?Introduction
STFTTwoextremecases:W(t)infinitelylong:
STFTturnsintoFT,providingexcellentfrequencyinformation(goodfrequencyresolution),butnotimeinformationW(t)infinitelyshort:
STFTthengivesthetimesignalback,withaphasefactor.Excellenttimeinformation(goodtimeresolution),butnofrequencyinformationIntroduction
SelectionofSTFTWindowWideanalysiswindowpoortimeresolution,goodfrequencyresolutionNarrowanalysiswindowgoodtimeresolution,poorfrequencyresolutionOncethewindowischosen,theresolutionissetforbothtimeandfrequency.Timeresolution:HowwelltwospikesintimecanbeseparatedfromeachotherinthetransformdomainFrequencyresolution:HowwelltwospectralcomponentscanbeseparatedfromeachotherinthetransformdomainBothtimeandfrequencyresolutionscannotbearbitrarilyhigh!!!
Wecannotpreciselyknowatwhattimeinstanceafrequencycomponentislocated.WecanonlyknowwhatintervaloffrequenciesarepresentinwhichtimeintervalsIntroduction
HeisenbergUncertaintyPrincipleIntroduction
STFTGaussianwindowfunction:a=0.01a=0.0001a=0.00001OvercomesthepresetresolutionproblemoftheSTFTbyusingavariablelengthwindowAnalysiswindowsofdifferentlengthsareusedfordifferentfrequencies:AnalysisofhighfrequenciesUsenarrowerwindowsforbettertimeresolutionAnalysisoflowfrequenciesUsewiderwindowsforbetterfrequencyresolutionThisworkswell,ifthesignaltobeanalyzedmainlyconsistsofslowlyvaryingcharacteristicswithoccasionalshorthighfrequencybursts.Heisenbergprinciplestillholds!!!Thefunctionusedtowindowthesignaliscalledthewavelet
Introduction
WaveletTransformContinuouswavelettransformofthesignalx(t)usingtheanalysiswavelet(.)Translationparameter,measureoftimeScaleparameter,measureoffrequencyThemotherwavelet.Allkernelsareobtainedbytranslating(shifting)and/orscalingthemotherwaveletAnormalizationconstantSignaltobeanalyzedScale=1/frequencyIntroduction
WaveletTransformHighfrequency(smallscale)Lowfrequency(largescale)Introduction
WTatWorkIntroduction
WTatWorkIntroduction
WTatWorkIntroduction
WTatWorkIntroduction
TimeandFrequencyResolutionBackgroundImagePyramidsComputeareduced-resolutionapproximationoftheinputimageFiltering(Averaging,Gaussian)Down-samplingUp-sampletheoutputofthepreviousbyafactor2Computethedifferencebetweenthepredictionofstep2andtheinputto
Step1.ImagePyramidsImagePyramidsInMulti-resolutionAnalysis(MRA),aScalingFunctionisusedtocreateaseriesofapproximationsofafunctionorimage,eachdifferingbyafactor2fromitsnearestneighboringapproximations.Additionalfunctions,calledWavelet,areusedtoencodethedifferenceininformationbetweenadjacentapproximationMulti-ResolutionExpansionMulti-ResolutionExpansion
SeriesExpansionReal-valuedexpansioncoefficientsReal-valuedexpansionfunctionsIftheexpansionisUNIQUE-thatis,thereisonlyonesetofforanygiven-thearecalledbasisfunctions,andtheexpansionset,,iscalledaBASISfortheclassoffunctionsthatcanbesoexpressed.TheexpressiblefunctionsformafunctionspacethatisreferredtoastheclosespanoftheexpansionsetMulti-ResolutionExpansion
SeriesExpansionDualFunctionsMulti-ResolutionExpansion
SeriesExpansionCASE1:ExpansionfunctionsformanorthonormalbasisCASE2:Expansionfunctionsarenotorthonormal,butareanorthogonalbasis(biorthogonalbasis)CASE3:ExpansionsetisnotabasisMulti-ResolutionExpansion
ScalingFunctionsMulti-ResolutionExpansion
ScalingFunctionsThescalingfunctionsisORTHOGONALtoitsintegertranslations.Thesubspacespannedbythescalingfunctionatlowscalesarenestedwithinthosespannedathigherscales.TheonlyfunctionthatiscommontoallVj
is
f(x)=0AnyfunctioncanberepresentedwitharbitraryprecisionMulti-ResolutionExpansion
MRARequirementsMulti-ResolutionExpansion
MRARequirementsScalingVectorMulti-ResolutionExpansion
WaveletFunctionsUnionofSpacesMulti-ResolutionExpansion
Wavele
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 關聯(lián)企業(yè)合同范例
- 2025年上海貨運從業(yè)資格證考試答案
- 2025年崇左貨運上崗證考試考哪些科目
- 2025年邯鄲貨車叢業(yè)資格證考試題
- 低壓車回收合同范本
- 農村建房裝修合同范本
- 養(yǎng)殖合作加盟協(xié)議合同范本
- 農耕地出租合同范本
- 傳媒簽約合同范本
- 加氣站合同范本
- 2024年萍鄉(xiāng)衛(wèi)生職業(yè)學院單招職業(yè)適應性測試題庫參考答案
- 飛行器小學生課件
- 應急突發(fā)處置
- 2024年定融認購協(xié)議合同范文
- 2024數(shù)據(jù)中心綜合布線工程產品選用指南
- 《檢驗檢測機構資質認定評審準則》知識試題
- GCP培訓課件教學課件
- 輸電線路運行項目現(xiàn)場作業(yè)安全風險識別防范措施
- 2023-2024學年廣東省廣州市天河區(qū)八年級(上)期末英語試卷
- 砸墻合同協(xié)議書(2篇)
- 2024加油站操作員安全培訓考試題及答案
評論
0/150
提交評論