版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共4頁2025屆黔東南市重點中學(xué)數(shù)學(xué)九年級第一學(xué)期開學(xué)學(xué)業(yè)質(zhì)量監(jiān)測試題題號一二三四五總分得分A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)在“愛我莒州”中學(xué)生演講比賽中,五位評委分別給甲、乙兩位選手的評分如下:甲8、7、9、8、8;乙:7、9、6、9、9,則下列說法中錯誤的是()A.甲得分的眾數(shù)是8 B.乙得分的眾數(shù)是9C.甲得分的中位數(shù)是9 D.乙得分的中位數(shù)是92、(4分)下列計算:,其中結(jié)果正確的個數(shù)為()A.1 B.2 C.3 D.43、(4分)已知一粒米的質(zhì)量是0.00021kg,這個數(shù)用科學(xué)記數(shù)法表示為()A.kg B.kg C.kg D.kg4、(4分)如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結(jié)論:①∠CAD=30°②BD=③S平行四邊形ABCD=AB?AC④OE=AD⑤S△APO=,正確的個數(shù)是()A.2 B.3 C.4 D.55、(4分)如圖在中,D、E分別是AB、AC的中點若的周長為16,則的周長為()A.6 B.7 C.8 D.96、(4分)(2016山西?。捙c長的比是(約0.618)的矩形叫做黃金矩形,黃金矩形蘊(yùn)藏著豐富的美學(xué)價值,給我們以協(xié)調(diào)和勻稱的美感.我們可以用這樣的方法畫出黃金矩形:作正方形ABCD,分別取AD、BC的中點E、F,連接EF:以點F為圓心,以FD為半徑畫弧,交BC的延長線于點G;作GH⊥AD,交AD的延長線于點H,則圖中下列矩形是黃金矩形的是()A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH7、(4分)如圖,在矩形ABCD中,AB=3,AD=4,點P在AB上,PE⊥AC于E,PF⊥BD于F,則PE+PF等于()A. B. C. D.8、(4分)下列式子一定成立的是()A. B. C. D.二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)正方形、、、…按如圖所示的方式放置.點、、、…和點、、、…分別在直線和軸上,則點的坐標(biāo)是__________.(為正整數(shù))10、(4分)如圖,在平面直角坐標(biāo)系xOy中,平行四邊形ABCD的四個頂點A,B,C,D是整點(橫、縱坐標(biāo)都是整數(shù)),則平行四邊形ABCD的面積是_____11、(4分)如圖,將一副直角三角板如圖所示放置,使含30°角的三角板的一條直角邊和含45°的三角板的一條直角邊重合,則∠1的度數(shù)為______.12、(4分)如圖,正方形ABCD是出四個全等的角三角形圍成的,若,,則EF的長為________。13、(4分)要使式子有意義,則的取值范圍是__________.三、解答題(本大題共5個小題,共48分)14、(12分)如圖所示,方格紙中的每個小方格都是邊長為1個單位長度的正方形,建立平面直角坐標(biāo)系,△ABC的頂點均在格點上.(不寫作法)(1)以原點O為對稱中心,畫出△ABC關(guān)于原點O對稱的△A1B1C1,并寫出B1的坐標(biāo);(2)再把△A1B1C1繞點C1順時針旋轉(zhuǎn)90°,得到△A2B2C1,請你畫出△A2B2C1,并寫出B2的坐標(biāo).15、(8分)如圖,在△ABC中,AB=AC,點,在邊上,.求證:.16、(8分)如圖,AB是⊙O的直徑,AC⊥AB,E為⊙O上的一點,AC=EC,延長CE交AB的延長線于點D.(1)求證:CE為⊙O的切線;(2)若OF⊥AE,OF=1,∠OAF=30°,求圖中陰影部分的面積.(結(jié)果保留π)17、(10分)在□ABCD,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.(1)求證:四邊形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.18、(10分)化簡或解方程:(1)化簡:(2)先化簡再求值:,其中.(3)解分式方程:.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)如圖,在菱形ABCD中,AB=5,對角線AC=1.若過點A作AE⊥BC,垂足為E,則AE的長為_________.20、(4分)張老師帶領(lǐng)x名學(xué)生到某動物園參觀,已知成人票每張10元,學(xué)生票每張5元,設(shè)門票的總費用為y元,則y=.21、(4分)如圖,在梯形ABCD中,AD∥BC,AD=1,BC=4,AC=3,BD=4,則梯形ABCD的面積為______.22、(4分)如圖,在平面直角坐標(biāo)系中,將△ABO繞點A順時針旋轉(zhuǎn)到的位置,點B、O分別落在點、處,點在x軸上,再將繞點順時針旋轉(zhuǎn)到的位置,點在x軸上,將繞點順時針旋轉(zhuǎn)到的位置,點在x軸上,依次進(jìn)行下去…若點,,則點的坐標(biāo)為________.23、(4分)已知點及第二象限的動點,且.設(shè)的面積為,則關(guān)于的函數(shù)關(guān)系式為________.二、解答題(本大題共3個小題,共30分)24、(8分)如圖1,在正方形ABCD中,點E,F(xiàn)分別是AC,BC上的點,且滿足DE⊥EF,垂足為點E,連接DF.(1)求∠EDF=(填度數(shù));(2)延長DE交AB于點G,連接FG,如圖2,猜想AG,GF,F(xiàn)C三者的數(shù)量關(guān)系,并給出證明;(3)①若AB=6,G是AB的中點,求△BFG的面積;②設(shè)AG=a,CF=b,△BFG的面積記為S,試確定S與a,b的關(guān)系,并說明理由.25、(10分)如圖1,在平面直角坐標(biāo)系中,矩形OABC如圖所示放置,點A在x軸上,點B的坐標(biāo)為(n,1)(n>0),將此矩形繞O點逆時針旋轉(zhuǎn)90°得到矩形OA′B′C′,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、A′、C′三點.(1)求此拋物線的解析式(a、b、c可用含n的式子表示);(2)若拋物線對稱軸是x=1的一條直線,直線y=kx+2(k≠0)與拋物線相交于兩點D(x1,y1)、E(x2、y2)(x1<x2),當(dāng)|x1﹣x2|最小時,求拋物線與直線的交點D和E的坐標(biāo);(3)若拋物線對稱軸是x=1的一條直線,如圖2,點M是拋物線的頂點,點P是y軸上一動點,點Q是坐標(biāo)平面內(nèi)一點,四邊形APQM是以PM為對角線的平行四邊形,點Q′與點Q關(guān)于直線AM對稱,連接MQ′、PQ′,當(dāng)△PMQ′與平行四邊形APQM重合部分的面積是平行四邊形的面積的時,求平行四邊形APQM的面積.26、(12分)如圖,在□ABCD中,E、F分別是AB、CD的中點.(1)求證:四邊形EBFD為平行四邊形;(2)對角線AC分別與DE、BF交于點M、N.求證:△ABN≌△CDM.
參考答案與詳細(xì)解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、C【解析】
眾數(shù)是在一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù);將一組數(shù)據(jù)按從小到大順序排列,處于最中間位置的一個數(shù)據(jù),或是最中間兩個數(shù)據(jù)的平均數(shù)稱為中位數(shù);【詳解】∵甲8、7、9、8、8;∴甲的眾數(shù)為8,中位數(shù)為8∵乙:7、9、6、9、9∴已的眾數(shù)為9,中位數(shù)為9故選C.本題考查的是眾數(shù),中位數(shù),熟練掌握眾數(shù),中位數(shù)是解題的關(guān)鍵.2、D【解析】
根據(jù)二次根式的運算法則即可進(jìn)行判斷.【詳解】,正確;正確;正確;,正確,故選D.此題主要考查二次根式的運算,解題的關(guān)鍵是熟知二次根式的性質(zhì):;.3、A【解析】
科學(xué)記數(shù)法的形式是:,其中<10,為整數(shù).所以,取決于原數(shù)小數(shù)點的移動位數(shù)與移動方向,是小數(shù)點的移動位數(shù),往左移動,為正整數(shù),往右移動,為負(fù)整數(shù)。本題小數(shù)點往右移動到2的后面,所以【詳解】解:0.00021故選A.本題考查的知識點是用科學(xué)記數(shù)法表示絕對值較小的數(shù),關(guān)鍵是在理解科學(xué)記數(shù)法的基礎(chǔ)上確定好的值,同時掌握小數(shù)點移動對一個數(shù)的影響.4、D【解析】
①先根據(jù)角平分線和平行得:∠BAE=∠BEA,則AB=BE=1,由有一個角是60度的等腰三角形是等邊三角形得:△ABE是等邊三角形,由外角的性質(zhì)和等腰三角形的性質(zhì)得:∠ACE=30°,最后由平行線的性質(zhì)可作判斷;②先根據(jù)三角形中位線定理得:OE=AB=,OE∥AB,根據(jù)勾股定理計算OC=和OD的長,可得BD的長;③因為∠BAC=90°,根據(jù)平行四邊形的面積公式可作判斷;④根據(jù)三角形中位線定理可作判斷;⑤根據(jù)同高三角形面積的比等于對應(yīng)底邊的比可得:S△AOE=S△EOC=OE?OC=,,代入可得結(jié)論.【詳解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四邊形ABCD是平行四邊形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等邊三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正確;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四邊形ABCD是平行四邊形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正確;③由②知:∠BAC=90°,∴S?ABCD=AB?AC,故③正確;④由②知:OE是△ABC的中位線,又AB=BC,BC=AD,∴OE=AB=AD,故④正確;⑤∵四邊形ABCD是平行四邊形,∴OA=OC=,∴S△AOE=S△EOC=OE?OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正確;本題正確的有:①②③④⑤,5個,故選D.本題考查了平行四邊形的性質(zhì)、等腰三角形的性質(zhì)、直角三角形30度角的性質(zhì)、三角形面積和平行四邊形面積的計算;熟練掌握平行四邊形的性質(zhì),證明△ABE是等邊三角形是解決問題的關(guān)鍵,并熟練掌握同高三角形面積的關(guān)系.5、C【解析】
根據(jù)三角形的中位線定理可以證得DE∥BC,則△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)即可求解【詳解】解:∵D、E分別是AB和AC的中點,
∴DE∥BC,且,即,
∴△ADE∽△ABC,
∴∴△ADE的周長是:.故選:C.本題考查了三角形中位線定理以及相似三角形的性質(zhì)定理,理解定理是關(guān)鍵.6、D【解析】
先根據(jù)正方形的性質(zhì)以及勾股定理,求得DF的長,再根據(jù)DF=GF求得CG的長,最后根據(jù)CG與CD的比值為黃金比,判斷矩形DCGH為黃金矩形.【詳解】解:設(shè)正方形的邊長為2,則CD=2,CF=1
在直角三角形DCF中,∴矩形DCGH為黃金矩形
故選:D.本題主要考查了黃金分割,解決問題的關(guān)鍵是掌握黃金矩形的概念.解題時注意,寬與長的比是的矩形叫做黃金矩形,圖中的矩形ABGH也為黃金矩形.7、B【解析】試題解析:因為AB=3,AD=4,所以AC=5,,由圖可知,AO=BO,則,因此,故本題應(yīng)選B.8、D【解析】
根據(jù)平方根、二次根式的加法及二次根式有意義的條件即可得到答案.【詳解】A.因為不知道a是否為正數(shù),所以不能得到;B.因為不知道a,b是否同為正數(shù)或負(fù)數(shù),所以不能得到;C.因為,所以錯誤;D.因為,所以正確.故選擇D.本題考查平方根、二次根式的加法及二次根式有意義的條件,解題的關(guān)鍵是掌握平方根、二次根式的加法及二次根式有意義的條件.二、填空題(本大題共5個小題,每小題4分,共20分)9、【解析】分析:由圖和條件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),Bn的橫坐標(biāo)為An+1的橫坐標(biāo),縱坐標(biāo)為An的縱坐標(biāo),又An的橫坐標(biāo)數(shù)列為An=2n-1-1,所以縱坐標(biāo)為(2n-1),然后就可以求出Bn的坐標(biāo)為[A(n+1)的橫坐標(biāo),An的縱坐標(biāo)].詳解:由圖和條件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),∴Bn的橫坐標(biāo)為An+1的橫坐標(biāo),縱坐標(biāo)為An的縱坐標(biāo),又An的橫坐標(biāo)數(shù)列為An=2n-1-1,所以縱坐標(biāo)為2n-1,∴Bn的坐標(biāo)為[A(n+1)的橫坐標(biāo),An的縱坐標(biāo)]=(2n-1,2n-1).故答案為(2n-1,2n-1).點睛:本題主要考查函數(shù)圖象上點的坐標(biāo)特征及正方形的性質(zhì),解決這類問題首先要從簡單圖形入手,抓住隨著“編號”或“序號”增加時,后一個圖形與前一個圖形相比,在數(shù)量上增加(或倍數(shù))情況的變化,找出數(shù)量上的變化規(guī)律,從而推出一般性的結(jié)論.10、1【解析】
結(jié)合網(wǎng)格特點利用平行四邊形的面積公式進(jìn)行求解即可.【詳解】由題意AD=5,平行四邊形ABCD的AD邊上的高為3,∴S平行四邊形ABCD=5×3=1,故答案為:1.本題考查了網(wǎng)格問題,平行四邊形的面積,熟練掌握網(wǎng)格的結(jié)構(gòu)特征以及平行四邊形的面積公式是解題的關(guān)鍵.11、75°【解析】
根據(jù)三角形內(nèi)角和定理求出∠DMC,求出∠AMF,根據(jù)三角形外角性質(zhì)得出∠1=∠A+∠AMF,代入求出即可.【詳解】∵∠ACB=90°,
∴∠MCD=90°,
∵∠D=60°,
∴∠DMC=30°,
∴∠AMF=∠DMC=30°,
∵∠A=45°,
∴∠1=∠A+∠AMF=45°+30°=75°,
故選:C.本題考查了三角形內(nèi)角和定理,三角形的外角性質(zhì)的應(yīng)用,解此題的關(guān)鍵是求出∠AMF的度數(shù).12、【解析】
根據(jù)全等三角形的性質(zhì)得到BH=AE=5,得到EH=BE-BH=7,根據(jù)勾股定理計算即可.【詳解】,同理,HF=7,故答案為.本題考查了全等三角形的性質(zhì)和勾股定理,在直角三角形中,如果兩條直角邊分別為a和b,斜邊為c,那么a2+b2=c2.也就是說,直角三角形兩條直角邊的平方和等于斜邊的平方.13、【解析】
根據(jù)二次根式被開方數(shù)必須是非負(fù)數(shù)的條件可得關(guān)于x的不等式,解不等式即可得.【詳解】由題意得:2-x≥0,解得:x≤2,故答案為x≤2.三、解答題(本大題共5個小題,共48分)14、(1)B1的坐標(biāo)(﹣5,4);(2)B2的坐標(biāo)(﹣1,2).【解析】
(1)作出各點關(guān)于原點的對稱點,再順次連接,并寫出B1的坐標(biāo)即可;(2)根據(jù)圖形旋轉(zhuǎn)的性質(zhì)畫出△A2B2C2,并寫出B2的坐標(biāo)即可.【詳解】(1)如圖,△A1B1C1即為所求,由圖可知B1的坐標(biāo)(﹣5,4);(2)如圖,△A2B2C2即為所求,由圖可知B2的坐標(biāo)(﹣1,2).考查的是作圖-旋轉(zhuǎn)變換,熟知圖形旋轉(zhuǎn)不變性的性質(zhì)是解答此題的關(guān)鍵.15、見解析【解析】試題分析:證明△ABE≌△ACD即可.試題解析:法1:∵AB=AC,∴∠B=∠C,∵AD=CE,∴∠ADE=∠AED,∴△ABE≌△ACD,∴BE=CD,∴BD=CE,法2:如圖,作AF⊥BC于F,∵AB=AC,∴BF=CF,∵AD=AE,∴DF=EF,∴BF-DF=CF-EF,即BD=CE.16、(1)見解析;(2).【解析】
(1)首先連接OE,由AC⊥AB,,可得∠CAD=90°,又由AC=EC,OA=OE,易證得∠CAE=∠CEA,∠FAO=∠FEO,即可證得CD為⊙O的切線;(2)根據(jù)題意可知∠OAF=30°,OF=1,可求得AE的長,又由S陰影=-,即可求得答案.【詳解】(1)證明:連接OE∵AC=EC,OA=OE∴∠CAE=∠CEA,∠FAO=∠FEO∵AC⊥AB,∴∠CAD=90°∴∠CAE+∠EAO=90°∴∠CEA+∠AEO=90°即∠CEA=90°∴OE⊥CD∴CE為⊙O的切線(2)解:∵∠OAF=30°,OF=1∴AO=2∴AF=即AE=∴∵∠AOE=120°,AO=2∴∴S陰影=此題考查垂徑定理及其推論,切線的判定與性質(zhì),扇形面積的計算,解題關(guān)鍵在于作輔助線.17、(1)見解析(2)見解析【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì),可得AB與CD的關(guān)系,根據(jù)平行四邊形的判定,可得BFDE是平行四邊形,再根據(jù)矩形的判定,可得答案;(2)根據(jù)平行線的性質(zhì),可得∠DFA=∠FAB,根據(jù)等腰三角形的判定與性質(zhì),可得∠DAF=∠DFA,根據(jù)角平分線的判定,可得答案.試題分析:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD.∵BE∥DF,BE=DF,∴四邊形BFDE是平行四邊形.∵DE⊥AB,∴∠DEB=90°,∴四邊形BFDE是矩形;(2)∵四邊形ABCD是平行四邊形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【點睛】本題考查了平行四邊形的性質(zhì),利用了平行四邊形的性質(zhì),矩形的判定,等腰三角形的判定與性質(zhì),利用等腰三角形的判定與性質(zhì)得出∠DAF=∠DFA是解題關(guān)鍵.18、(1)(2)(3)【解析】
(1)先通分,然后利用同分母分式加減法的法則進(jìn)行計算即可;(2)括號內(nèi)先通分進(jìn)行分式加減法運算,然后再進(jìn)行分式乘除法運算,最后把數(shù)值代入化簡后的結(jié)果進(jìn)行計算即可;(3)方程兩邊同時乘以(x+2)(x-2),化為整式方程后解整式方程,然后進(jìn)行檢驗即可.【詳解】(1)原式=;(2)原式==,當(dāng),時,原式;(3)兩邊同時乘以(x+2)(x-2),得:,解得:,檢驗:當(dāng)時,(x+2)(x-2)≠0,所以x=10是原分式方程的解.本題考查了分式的化簡求值,解分式方程,熟練掌握分式混合運算的法則是解(1)(2)的關(guān)鍵,掌握解分式方程的一般步驟以及注意事項是解(3)的關(guān)鍵.一、填空題(本大題共5個小題,每小題4分,共20分)19、【解析】
設(shè)BE=x,則CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理表示出AE的平方,列出方程求解并進(jìn)一步得到AE的長.【詳解】設(shè)BE=x,則CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理可得:所以解得,所以AE=.考點:1.菱形的性質(zhì);2.勾股定理.20、y=5x+1.【解析】試題分析:總費用=成人票用錢數(shù)+學(xué)生票用錢數(shù),根據(jù)關(guān)系列式即可.試題解析:根據(jù)題意可知y=5x+1.考點:列代數(shù)式.21、2【解析】
過點D作DE∥AC,交BC的延長線于點E,得四邊形ACED是平行四邊形,則DE=AC=3,CE=AD=1.根據(jù)勾股定理的逆定理即可證明三角形BDE是直角三角形.根據(jù)梯形的面積即為直角三角形BDE的面積進(jìn)行計算.【詳解】解:過點D作DE∥AC,交BC的延長線于點E,則四邊形ACED是平行四邊形,∴DE=AC=3,CE=AD=1,在三角形BDE中,∵BD=4,DE=3,BE=5,∴根據(jù)勾股定理的逆定理,得三角形BDE是直角三角形,∵四邊形ACED是平行四邊形∴AD=CE,∴AD+BC=BE,∵梯形ABCD與三角形BDE的高相等,∴梯形的面積即是三角形BDE的面積,即3×4÷2=2,故答案是:2.本題考查了梯形的性質(zhì),梯形中常見的輔助線之一是平移對角線.22、(1,2)【解析】
先根據(jù)已知求出三角形三邊長度,然后通過旋轉(zhuǎn)發(fā)現(xiàn),B、B2、B4…,即可得每偶數(shù)之間的B相差6個單位長度,根據(jù)這個規(guī)律可以求得B2018的坐標(biāo).【詳解】∵AO=,BO=2,∴AB=,∴OA+AB1+B1C2=6,∴B2的橫坐標(biāo)為:6,且B2C2=2,∴B4的橫坐標(biāo)為:2×6=12,∴點B2018的橫坐標(biāo)為:2018÷2×6=1.∴點B2018的縱坐標(biāo)為:2.∴點B2018的坐標(biāo)為:(1,2),故答案是:(1,2).考查了點的坐標(biāo)規(guī)律變換以及勾股定理的運用,通過圖形旋轉(zhuǎn),找到所有B點之間的關(guān)系是解決本題的關(guān)鍵.23、【解析】
根據(jù)即可列式求解.【詳解】如圖,∵∴∴點在上,∴,故.此題主要考查一次函數(shù)與幾何綜合,解題的關(guān)鍵是熟知一次函數(shù)的圖像與性質(zhì)、三角形的面積公式.二、解答題(本大題共3個小題,共30分)24、(1)45°;(2)GF=AG+CF,證明見解析;(3)①1;②,理由見解析.【解析】
(1)如圖1中,連接BE.利用全等三角形的性質(zhì)證明EB=ED,再利用等角對等邊證明EB=EF即可解決問題.(2)猜想:GF=AG+CF.如圖2中,將△CDF繞點D旋轉(zhuǎn)90°,得△ADH,證明△GDH≌△GDF(SAS)即可解決問題.(3)①設(shè)CF=x,則AH=x,BF=1-x,GF=3+x,利用勾股定理構(gòu)建方程求出x即可.②設(shè)正方形邊長為x,利用勾股定理構(gòu)建關(guān)系式,利用整體代入的思想解決問題即可.【詳解】解:(1)如圖1中,連接BE.∵四邊形ABCD是正方形,∴CD=CB,∠ECD=∠ECB=45°,∵EC=EC,∴△ECB≌△ECD(SAS),∴EB=ED,∠EBC=∠EDC,∵∠DEF=∠DCF=90°,∴∠EFC+∠EDC=180°,∵∠EFB+∠EFC=180°,∴∠EFB=∠EDC,∴∠EBF=∠EFB,∴EB=EF,∴DE=EF,∵∠DEF=90°,∴∠EDF=45°故答案為45°.(2)猜想:GF=AG+CF.如圖2中,將△CDF繞點D旋轉(zhuǎn)90°,得△ADH,∴∠CDF=∠ADH,DF=DH,CF=AH,∠DAH=∠DCF=90°,∵∠DAC=90°,∴∠DAC+∠DAH=180°,∴H、A、G三點共線,∴GH=AG+AH=AG+CF,∵∠EDF=45°,∴∠CDF+∠ADG=45°,∴∠ADH+∠ADG=45°∴∠GDH=∠EDF=45°又∵DG=DG∴△GDH≌△GDF(SAS)∴GH=GF,∴GF=AG+CF.(3)①設(shè)CF=x,則AH=x,BF=1-x,GF=3+x,則有(3+x)2=(1-x)2+32,解得x=2∴S△BFG=?BF?BG=1.②設(shè)正方形邊長為x,∵AG=a,CF=b,∴BF=x-b,BG=x-a,GF=a+b,則有(x-a)2+(x-b)2=(a+b)2,化簡得到:x2-ax-bx=ab,∴S=(x-a)(x-b)=(x2-ax-bx+ab)=×2ab=ab.本題屬于四邊形綜合題,考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考??碱}型.25、(3)y=﹣x2+(n﹣3)x+n;(2)D(﹣3,5),E(3,4);(2)5或3.【解析】
(3)先根據(jù)四邊形ABCD是矩形,點B的坐標(biāo)為(n,3)(n>5),求出點A、C的坐標(biāo),再根據(jù)圖形旋轉(zhuǎn)的性質(zhì)求出A′、C′的坐標(biāo);把A、A′、C′三點的坐標(biāo)代入即可得出a、b、c的值,進(jìn)而得出其拋物線的解析式;
(2)將一次函數(shù)與二次函數(shù)組成方程組,得到一元二次方程x2+(k-2)x-3=5,根據(jù)根與系數(shù)的關(guān)系求出k的值,進(jìn)而求出D(-3,5),E(3,4);
(2)設(shè)P(5,p),根據(jù)平行四邊形性質(zhì)及點M坐標(biāo)可得Q(2,4+p),分P點在AM下方與P點在AM上方兩種情況,根據(jù)重合部分的面積關(guān)系及對稱性求得點P的坐標(biāo)后即可得?APQM面積.【詳解】解:(3)∵四邊形ABCO是矩形,點B的坐標(biāo)為(n,3)(n>5),∴A(n,5),C(5,3),∵矩形OA′B′C′由矩形OABC旋轉(zhuǎn)而成,∴A′(5,n),C′(﹣3,5);將拋物線解析式為y=ax2+bx+c,∵A(n,5),A′(5,n),C′(﹣3,5),∴,解得,∴此拋物線的解析式為:y=﹣x2+(n﹣3)x+n;(2)對稱軸為x=3,得﹣=3,解得n=2,則拋物線的解析式為y=﹣x2+2x+2.由,整理可得x2+(k﹣2)x﹣3=5,∴x3+x2=﹣(k﹣2),x3x2=﹣3.∴(x3﹣x2)2=(x3+x2)2﹣4x3x2=(k﹣2)2+4.∴當(dāng)k=2時,(x3﹣x2)2的最小值為4,即|x3﹣x2|的最小值為2,∴x2﹣3=5,由x3<x2可得x3=﹣3,x2=3,即y3=4,y2=5.∴當(dāng)|x3﹣x2|最小時,拋物線與直線的交點為D(﹣3,5),E(3,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 零售商聯(lián)營模式合作協(xié)議
- 文化傳播行業(yè)數(shù)字圖書館建設(shè)與信息共享策略研究
- 2025年度委托制作合同模板:網(wǎng)絡(luò)游戲角色皮膚定制3篇
- 2024年甲方與乙方就新型環(huán)保材料研發(fā)合作合同
- 醫(yī)療機(jī)構(gòu)醫(yī)患權(quán)益保障及風(fēng)險免責(zé)合同
- 工業(yè)4.0項目合作框架協(xié)議
- 電信行業(yè)智能化客戶服務(wù)體驗優(yōu)化方案
- 構(gòu)建跨行業(yè)在線平臺開發(fā)計劃
- 2024年適用二手車租賃協(xié)議典范版B版
- 2025年度洪凌離婚后的個人形象重塑與推廣合同3篇
- 2024年新技術(shù)、新產(chǎn)品、新工藝、新材料的應(yīng)用培訓(xùn)課件
- 2025新年春節(jié)專用對聯(lián)蛇年春聯(lián)帶橫批
- 2025年中聯(lián)重科公司發(fā)展戰(zhàn)略和經(jīng)營計劃
- Unit8 Chinese New Year 第一課時(說課稿)-2024-2025學(xué)年譯林版(三起)英語六年級上冊
- JGJT46-2024《施工現(xiàn)場臨時用電安全技術(shù)標(biāo)準(zhǔn)》條文解讀
- 半結(jié)構(gòu)化面試題100題
- 服裝廠班組長培訓(xùn)
- 廣東省公立醫(yī)療機(jī)構(gòu)基本醫(yī)療服務(wù)價格項目修訂表
- 申論公務(wù)員考試試題與參考答案
- 《激光原理及應(yīng)用》全套課件
- 北京市海淀區(qū)2023-2024學(xué)年高三上學(xué)期期末考試+歷史 含答案
評論
0/150
提交評論