版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
一、選擇題1.按如圖所示的程序計算,若開始輸入的值為25,則最后輸出的y值是()A. B. C.5 D.2.求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,則2S=2+22+23+24+…+22021,因此2S-S=22021-1.仿照以上推理,計算出1+2020+20202+20203+…+20202020的值為()A. B. C. D.3.對一組數(shù)(x,y)的一次操作變換記為P1(x,y),定義其變換法則如下:P1(x,y)=(x+y,x-y),且規(guī)定Pn(x,y)=P1(Pn-1(x,y))(n為大于1的整數(shù)),如:P1(1,2)=(3,-1),P2(1,2)=P1(P1(1,2))=P1(3,-1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,-2),則P2017(1,-1)=().A.(0,21008)B.(0,-21008)C.(0,-21009)D.(0,21009)4.已知邊長為的正方形面積為8,則下列關(guān)于的說法中,錯誤的是()A.是無理數(shù) B.是8的算術(shù)平方根C.滿足不等式組 D.的值不能在數(shù)軸表示5.已知,為兩個連續(xù)的整數(shù),且,則的值等于()A. B. C. D.6.以下11個命題:①負數(shù)沒有平方根;②內(nèi)錯角相等;③同旁內(nèi)角互補,兩直線平行;④一個正數(shù)有兩個立方根,它們互為相反數(shù);⑤無限不循環(huán)小數(shù)是無理數(shù);⑥數(shù)軸上的點與實數(shù)有一一對應(yīng)關(guān)系;⑦過一點有且只有一條直線和已知直線垂直;⑧不相交的兩條直線叫做平行線;⑨從直線外一點到這條直線的垂線段,叫做這點到直線的距離.⑩開方開不盡的數(shù)是無理數(shù);?相等的兩個角是對頂角;其中真命題的個數(shù)為()A.5 B.6 C.7 D.87.如圖,在數(shù)軸上表示的對應(yīng)點分別為,點關(guān)于點的對稱點為,則點表示的數(shù)為()A. B. C. D.8.有下列說法:①在1和2之間的無理數(shù)有且只有這兩個;②實數(shù)與數(shù)軸上的點一一對應(yīng);③兩個無理數(shù)的積一定是無理數(shù);④是分數(shù).其中正確的為()A.①②③④ B.①②④ C.②④ D.②9.觀察下列各等式:……根據(jù)以上規(guī)律可知第11行左起第11個數(shù)是()A.-130 B.-131 C.-132 D.-13310.下列命題中,①81的平方根是9;②的平方根是±2;③?0.003沒有立方根;④?64的立方根為±4;⑤,其中正確的個數(shù)有()A.1 B.2 C.3 D.4二、填空題11.對于任意有理數(shù)a,b,規(guī)定一種新的運算a⊙b=a(a+b)﹣1,例如,2⊙5=2×(2+5)﹣1=13.則(﹣2)⊙6的值為_____12.已知an=(n=1,2,3,…),記b1=2(1-a1),b2=2(1-a1)(1-a2),…,bn=2(1-a1)(1-a2)…(1-an),則通過計算推測出表達式bn=________(用含n的代數(shù)式表示).13.在研究“數(shù)字黑洞”這節(jié)課中,樂樂任意寫下了一個四位數(shù)(四數(shù)字完全相同的除外),重新排列各位數(shù)字,使其組成一個最大的數(shù)和一個最小的數(shù),然后用最大的數(shù)減去最小的數(shù),得到差:重復(fù)這個過程,……,樂樂發(fā)現(xiàn)最后將變成一個固定的數(shù),則這個固定的數(shù)是__________.14.對于正整數(shù)a,我們規(guī)定:若a為奇數(shù),則;若a為偶數(shù),則例如,,若,,,,,依此規(guī)律進行下去,得到一列數(shù),,,,,,為正整數(shù),則______.15.我們可以用符號f(a)表示代數(shù)式.當a是正整數(shù)時,我們規(guī)定如果a為偶數(shù),f(a)=0.5a;如果a為奇數(shù),f(a)=5a+1.例如:f(20)=10,f(5)=26.設(shè)a1=6,a2=f(a1),a3=f(a2)…;依此規(guī)律進行下去,得到一列數(shù):a1,a2,a3,a4…(n為正整數(shù)),則2a1﹣a2+a3﹣a4+a5﹣a6+…+a2013﹣a2014+a2015=_____.16.已知,則的值是__________;17.對兩數(shù)a,b規(guī)定一種新運算:,例如:,若不論取何值時,總有,則=______.18.已知M是滿足不等式的所有整數(shù)的和,N是的整數(shù)部分,則的平方根為__________.19.若表示大于x的最小整數(shù),如,,則下列結(jié)論中正確的有______(填寫所有正確結(jié)論的序號).①;②;③;④;⑤存在有理數(shù)x使成立.20.在平面直角坐標系xOy中,對于點P(x,y),如果點Q(x,)的縱坐標滿足,那么稱點Q為點P的“關(guān)聯(lián)點”.請寫出點(3,5)的“關(guān)聯(lián)點”的坐標_______;如果點P(x,y)的關(guān)聯(lián)點Q坐標為(-2,3),則點P的坐標為________.三、解答題21.對非負實數(shù)“四舍五入”到各位的值記為.即:當為非負整數(shù)時,如果,則;反之,當為非負整數(shù)時,如果,則.例如:,.(1)計算:;;(2)①求滿足的實數(shù)的取值范圍,②求滿足的所有非負實數(shù)的值;(3)若關(guān)于的方程有正整數(shù)解,求非負實數(shù)的取值范圍.22.閱讀下列解題過程:為了求的值,可設(shè),則,所以得,所以;仿照以上方法計算:(1).(2)計算:(3)計算:23.觀察下面的變形規(guī)律:;;;….解答下面的問題:(1)仿照上面的格式請寫出=;(2)若n為正整數(shù),請你猜想=;(3)基礎(chǔ)應(yīng)用:計算:.(4)拓展應(yīng)用1:解方程:=2016(5)拓展應(yīng)用2:計算:.24.閱讀下面的文字,解答問題.對于實數(shù)a,我們規(guī)定:用符號[a]表示不大于a的最大整數(shù);用{a}表示a減去[a]所得的差.例如:[]=1,[2.2]=2,{}=﹣1,{2.2}=2.2﹣2=0.2.(1)仿照以上方法計算:[]={5﹣}=;(2)若[]=1,寫出所有滿足題意的整數(shù)x的值:.(3)已知y0是一個不大于280的非負數(shù),且滿足{}=0.我們規(guī)定:y1=[],y2=[],y3=[],…,以此類推,直到y(tǒng)n第一次等于1時停止計算.當y0是符合條件的所有數(shù)中的最大數(shù)時,此時y0=,n=.25.(概念學(xué)習(xí))規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3)④,讀作“﹣3的圈4次方”,一般地,把n個a(a≠0)記作a?,讀作“a的圈n次方”.(初步探究)(1)直接寫出計算結(jié)果:2③=,(﹣)⑤=;(深入思考)我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?(1)試一試:仿照上面的算式,將下列運算結(jié)果直接寫成乘方的形式.(﹣3)④=;5⑥=;(﹣)⑩=.(2)想一想:將一個非零有理數(shù)a的圈n次方寫成乘方的形式等于;26.若一個四位數(shù)t的前兩位數(shù)字相同且各位數(shù)字均不為0,則稱這個數(shù)為“前介數(shù)”;若把這個數(shù)的個位數(shù)字放到前三位數(shù)字組成的數(shù)的前面組成一個新的四位數(shù),則稱這個新的四位數(shù)為“中介數(shù)”;記一個“前介數(shù)”t與它的“中介數(shù)”的差為P(t).例如,5536前兩位數(shù)字相同,所以5536為“前介數(shù)”;則6553就為它的“中介數(shù)”,P(5536)=5536﹣6553=-1017.(1)P(2215)=,P(6655)=.(2)求證:任意一個“前介數(shù)”t,P(t)一定能被9整除.(3)若一個千位數(shù)字為2的“前介數(shù)”t能被6整除,它的“中介數(shù)”能被2整除,請求出滿足條件的P(t)的最大值.27.如果有一列數(shù),從這列數(shù)的第2個數(shù)開始,每一個數(shù)與它的前一個數(shù)的比等于同一個非零的常數(shù),這樣的一列數(shù)就叫做等比數(shù)列(GeometricSequences).這個常數(shù)叫做等比數(shù)列的公比,通常用字母q表示(q≠0).(1)觀察一個等比列數(shù)1,,…,它的公比q=;如果an(n為正整數(shù))表示這個等比數(shù)列的第n項,那么a18=,an=;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步驟進行:令S=1+2+4+8+16+…+230…①等式兩邊同時乘以2,得2S=2+4+8+16++32+…+231…②由②﹣①式,得2S﹣S=231﹣1即(2﹣1)S=231﹣1所以請根據(jù)以上的解答過程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若數(shù)列a1,a2,a3,…,an,從第二項開始每一項與前一項之比的常數(shù)為q,請用含a1,q,n的代數(shù)式表示an;如果這個常數(shù)q≠1,請用含a1,q,n的代數(shù)式表示a1+a2+a3+…+an.28.觀察下列各式:(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1……(1)根據(jù)以上規(guī)律,則(x-1)(x6+x5+x4+x3+x2+x+1)=__________________.(2)你能否由此歸納出一般性規(guī)律(x-1)(xn+xn-1+xn-2+…+x+1)=____________.(3)根據(jù)以上規(guī)律求1+3+32+…+349+350的結(jié)果.29.閱讀型綜合題對于實數(shù)我們定義一種新運算(其中均為非零常數(shù)),等式右邊是通常的四則運算,由這種運算得到的數(shù)我們稱之為線性數(shù),記為,其中叫做線性數(shù)的一個數(shù)對.若實數(shù)都取正整數(shù),我們稱這樣的線性數(shù)為正格線性數(shù),這時的叫做正格線性數(shù)的正格數(shù)對.(1)若,則,;(2)已知,.若正格線性數(shù),(其中為整數(shù)),問是否有滿足這樣條件的正格數(shù)對?若有,請找出;若沒有,請說明理由.30.定義:如果,那么稱b為n的布谷數(shù),記為.例如:因為,所以,因為,所以.(1)根據(jù)布谷數(shù)的定義填空:g(2)=________________,g(32)=___________________.(2)布谷數(shù)有如下運算性質(zhì):若m,n為正整數(shù),則,.根據(jù)運算性質(zhì)解答下列各題:①已知,求和的值;②已知.求和的值.【參考答案】***試卷處理標記,請不要刪除一、選擇題1.B解析:B【分析】根據(jù)已知進行計算,并判斷每一步輸出結(jié)果即可得到答案.【詳解】解:∵25的算術(shù)平方根是5,5不是無理數(shù),∴再取5的平方根,而5的平方根為,是無理數(shù),∴輸出值y=,故選:B.【點睛】本題考查實數(shù)分類及計算,判斷每步計算結(jié)果是否為無理數(shù)是解題的關(guān)鍵.2.C解析:C【分析】由題意可知S=1+2020+20202+20203+…+20202020①,可得到2020S=2020+20202+20203+…+20202020+20202021②,然后由②-①,就可求出S的值.【詳解】解:設(shè)S=1+2020+20202+20203+…+20202020①則2020S=2020+20202+20203+…+20202020+20202021②由②-①得:2019S=20202021-1∴.故答案為:C.【點晴】本題主要考查探索數(shù)與式的規(guī)律,有理數(shù)的加減混合運算.3.D解析:D【解析】分析:用定義的規(guī)則分別計算出P1,P2,P3,P4,P5,P6,觀察所得的結(jié)果,總結(jié)出規(guī)律求解.詳解:因為P1(1,-1)=(0,2);P2(1,-1)=P1(P1(1,-1))=P1(0,2)=(2,-2);P3(1,-1)=P1(P2(2,-2))=(0,4);P4(1,-1)=P1(P3(0,4))=(4,-4);P5(1,-1)=P1(P4(4,-4))=(0,8);P6(1,-1)=P1(P5(0,8))=(8,-8);……P2n-1(1,-1)=……=(0,2n);P2n(1,-1)=……=(2n,-2n).因為2017=2×1009-1,所以P2017=P2×1009-1=(0,21009).故選D.點睛:對于新定義,要理解它所規(guī)定的運算規(guī)則,再根據(jù)這個規(guī)則進行相關(guān)的計算;探索數(shù)字的變化規(guī)律通常用列舉法,按照一定的順序列舉一定數(shù)量的運算過程和結(jié)果,從運算過程和結(jié)果中歸納出運算結(jié)果或運算結(jié)果的規(guī)律.4.D解析:D【分析】根據(jù)題意求得,根據(jù)無理數(shù)的定義,算術(shù)平方根的定義,無理數(shù)的估算,實數(shù)與數(shù)軸一一對應(yīng)逐項分析判斷即可【詳解】解:根據(jù)題意,,則A.是無理數(shù),故該選項正確,不符合題意;B.是8的算術(shù)平方根,故該選項正確,不符合題意;C.即,則滿足不等式組,故該選項正確,不符合題意;D.的值能在數(shù)軸表示,故該選項不正確,符合題意;故選D【點睛】本題考查了無理數(shù)的定義,算術(shù)平方根的定義,無理數(shù)的估算,實數(shù)與數(shù)軸一一對應(yīng),是解題的關(guān)鍵.無理數(shù)的定義:“無限不循環(huán)的小數(shù)是無理數(shù)”,平方根:如果一個數(shù)的平方等于,那么這個數(shù)就叫的平方根,其中屬于非負數(shù)的平方根稱之為算術(shù)平方根.5.B解析:B【分析】先估算出的取值范圍,利用“夾逼法”求得a、b的值,然后代入求值即可.【詳解】解:∵16<18<25,∴4<<5.∵a,b為兩個連續(xù)的整數(shù),且a<<b,∴a=4,b=5,∴.故選:B.【點睛】本題考查了估算無理數(shù)的大小,熟知估算無理數(shù)的大小要用逼近法是解答此題的關(guān)鍵.6.A解析:A【分析】根據(jù)相關(guān)知識逐項判斷即可求解.【詳解】解:①“負數(shù)沒有平方根”,是真命題②“內(nèi)錯角相等”,缺少兩直線平行這一條件,是假命題;③“同旁內(nèi)角互補,兩直線平行”,是真命題;④“一個正數(shù)有兩個立方根,它們互為相反數(shù)”,一個正數(shù)有一個立方根,是假命題;⑤“無限不循環(huán)小數(shù)是無理數(shù)”,是真命題;⑥“數(shù)軸上的點與實數(shù)有一一對應(yīng)關(guān)系”,是真命題;⑦“過一點有且只有一條直線和已知直線垂直”,缺少在同一平面內(nèi)條件,是假命題;⑧“不相交的兩條直線叫做平行線”,缺少在同一平面內(nèi)條件,是假命題;⑨“從直線外一點到這條直線的垂線段,叫做這點到直線的距離”,應(yīng)為“從直線外一點到這條直線的垂線段的長度,叫做這點到直線的距離”,是假命題.⑩“開方開不盡的數(shù)是無理數(shù)”,是真命題;?“相等的兩個角是對頂角”,相等的角有可能是對頂角,但不一定是對頂角,是假命題.所以真命題有5個.故選:A【點睛】本題考查判斷真假命題、平方根、立方根、平行線的判定、無理數(shù)、實數(shù)與數(shù)軸關(guān)系、直線外一點到直線的距離、對頂角等知識,綜合性較強,熟知相關(guān)知識點是解題關(guān)鍵.7.C解析:C【分析】首先根據(jù)表示1、的對應(yīng)點分別為點A、點B可以求出線段AB的長度,然后根據(jù)點B和點C關(guān)于點A對稱,求出AC的長度,最后可以計算出點C的坐標.【詳解】解:∵表示1、的對應(yīng)點分別為點A、點B,∴AB=?1,∵點B關(guān)于點A的對稱點為點C,∴CA=AB,∴點C的坐標為:1?(?1)=2?.故選:C.【點睛】本題考查的知識點為實數(shù)與數(shù)軸,解決本題的關(guān)鍵是求數(shù)軸上兩點間的距離就讓右邊的數(shù)減去左邊的數(shù).知道兩點間的距離,求較小的數(shù),就用較大的數(shù)減去兩點間的距離.8.D解析:D【分析】根據(jù)無理數(shù)的定義與運算、實數(shù)與數(shù)軸逐個判斷即可得.【詳解】①在1和2之間的無理數(shù)有無限個,此說法錯誤;②實數(shù)與數(shù)軸上的點一一對應(yīng),此說法正確;③兩個無理數(shù)的積不一定是無理數(shù),如,此說法錯誤;④是無理數(shù),不是分數(shù),此說法錯誤;綜上,說法正確的為②,故選:D.【點睛】本題考查了無理數(shù)的定義與運算、實數(shù)與數(shù)軸,熟練掌握運算法則和定義是解題關(guān)鍵.9.C解析:C【分析】通過觀察發(fā)現(xiàn):每一行等式右邊的數(shù)就是行數(shù)的平方,故第n行右邊的數(shù)就是n的平方,而左起第一個數(shù)的絕對值比右側(cè)的數(shù)大1,并且左邊的項數(shù)是行數(shù)的2倍,前一半的符號為負,后一半的符號為正.【詳解】解:第一行:;第二行:;第三行:;第四行:;……第n行:;∴第11行:.∵左起第一個數(shù)的絕對值比右側(cè)的數(shù)大1,并且左邊的項數(shù)是行數(shù)的2倍,前一半的符號為負,后一半的符號為正.∴第11行左起第1個數(shù)是-122,第11個數(shù)是-132.故選:C.【點睛】此題主要考查探索數(shù)與式的規(guī)律,正確找出規(guī)律是解題關(guān)鍵.10.A解析:A【分析】根據(jù)平方根的定義對①②進行判斷;根據(jù)立方根的定義對③④進行判斷;根據(jù)命題的定義對⑤進行判斷.【詳解】解:81的平方根是±9,所以①錯誤;的平方根是±2,所以②正確;-0.003有立方根,所以③錯誤;?64的立方根為-4,所以④錯誤;不符合命題定義,所以⑤正錯誤.故選:A.【點睛】本題考查了立方根和平方根的應(yīng)用,主要考查學(xué)生的辨析能力,題目比較典型,但是一道比較容易出錯的題目.二、填空題11.-9【分析】直接利用已知運算法則計算得出答案.【詳解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案為﹣9.【點睛】此題考察新定義形式的有理數(shù)計算,解析:-9【分析】直接利用已知運算法則計算得出答案.【詳解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案為﹣9.【點睛】此題考察新定義形式的有理數(shù)計算,正確理解題意是解題的關(guān)鍵,依據(jù)題意正確列代數(shù)式計算即可.12..【詳解】根據(jù)題意按規(guī)律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根據(jù)以上分析bn=2(1-a1)(1-a2)…(1-an)=.“點睛”本題解析:.【詳解】根據(jù)題意按規(guī)律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根據(jù)以上分析bn=2(1-a1)(1-a2)…(1-an)=.“點睛”本題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.本題中表示b值時要先算出a的值,要注意a中n的取值.13.6174【分析】任選四個不同的數(shù)字,組成個最大的數(shù)和一個最小的數(shù),用大數(shù)減去小數(shù),如1234,4321-
1234=
3087,8730-378=
8352
,8532一2358=
617解析:6174【分析】任選四個不同的數(shù)字,組成個最大的數(shù)和一個最小的數(shù),用大數(shù)減去小數(shù),如1234,4321-
1234=
3087,8730-378=
8352
,8532一2358=
6174,6174是符合條件的4位數(shù)中唯一會產(chǎn)生循環(huán)的(7641-1467=
6174)
這個在數(shù)學(xué)上被稱之為卡普耶卡(Kaprekar)猜想.【詳解】任選四個不同的數(shù)字,組成一個最大的數(shù)和一個最小的數(shù),用大數(shù)減去小數(shù),用所得的結(jié)果的四位數(shù)重復(fù)上述的過程,最多七步必得6174,如1234,4321-1234
=3087,8730
-378
=
8352,8532-2358=
6174,這一現(xiàn)象在數(shù)學(xué)上被稱之為卡普耶卡(Kaprekar)猜想,故答案為:6174.【點睛】此題考查數(shù)字的規(guī)律運算,正確理解題意通過計算發(fā)現(xiàn)規(guī)律并運用解題是關(guān)鍵.14.4728【分析】先求出,,,,尋找規(guī)律后即可解決問題.【詳解】由題意,,,,,,,,從開始,出現(xiàn)循環(huán):4,2,1,,,,故答案為4728.【點睛】本題考查了規(guī)律型——數(shù)字的變解析:4728【分析】先求出,,,,尋找規(guī)律后即可解決問題.【詳解】由題意,,,,,,,,從開始,出現(xiàn)循環(huán):4,2,1,,,,故答案為4728.【點睛】本題考查了規(guī)律型——數(shù)字的變化類問題,解題的關(guān)鍵是從一般到特殊,尋找規(guī)律,利用規(guī)律解決問題.15.7【分析】本題可以根據(jù)代數(shù)式f(a)的運算求出a1,a2,a3,a4,a5,a6,a7的值,根據(jù)規(guī)律找出部分an的值,進而發(fā)現(xiàn)數(shù)列每7個數(shù)一循環(huán),根據(jù)數(shù)的變化找出變化規(guī)律,依照規(guī)律即可得出結(jié)論解析:7【分析】本題可以根據(jù)代數(shù)式f(a)的運算求出a1,a2,a3,a4,a5,a6,a7的值,根據(jù)規(guī)律找出部分an的值,進而發(fā)現(xiàn)數(shù)列每7個數(shù)一循環(huán),根據(jù)數(shù)的變化找出變化規(guī)律,依照規(guī)律即可得出結(jié)論.【詳解】解:觀察,發(fā)現(xiàn)規(guī)律:a1=6,a2=f(a1)=3,a3=f(a2)=16,a4=f(a3)=8,a5=f(a4)=4,a6=f(a5)=2,a7=f(a6)=1,a8=f(a7)=6,…,∴數(shù)列a1,a2,a3,a4…(n為正整數(shù))每7個數(shù)一循環(huán),∴a1-a2+a3-a4+…+a13-a14=0,∵2015=2016-1=144×14-1,∴2a1-a2+a3-a4+a5-a6+…+a2013-a2014+a2015=a1+a2016+(a1-a2+a3-a4+a5-a6+…+a2015-a2016)=a1+a7=6+1=7.故答案為7.【點睛】本題考查了規(guī)律型中的數(shù)字的變化類以及代數(shù)式求值,解題的關(guān)鍵是根據(jù)數(shù)的變化找出變換規(guī)律,并且巧妙的借助了a1-a2+a3-a4+…+a13-a14=0來解決問題.16.10【分析】根據(jù)二次根式的性質(zhì)和絕對值的性質(zhì)求出a,b計算即可;【詳解】∵,∴,∴,∴.故答案是10.【點睛】本題主要考查了代數(shù)式求值,結(jié)合二次根式的性質(zhì)和絕對值的性質(zhì)計算即可.解析:10【分析】根據(jù)二次根式的性質(zhì)和絕對值的性質(zhì)求出a,b計算即可;【詳解】∵,∴,∴,∴.故答案是10.【點睛】本題主要考查了代數(shù)式求值,結(jié)合二次根式的性質(zhì)和絕對值的性質(zhì)計算即可.17.【分析】將,轉(zhuǎn)化為2ax=x來解答.【詳解】解:∵可轉(zhuǎn)化為:2ax=x,即,∵不論x取何值,都成立,∴,解得:,故答案為:.【點睛】本題考查實數(shù)的運算,正確理解題目中的新運算是解析:【分析】將,轉(zhuǎn)化為2ax=x來解答.【詳解】解:∵可轉(zhuǎn)化為:2ax=x,即,∵不論x取何值,都成立,∴,解得:,故答案為:.【點睛】本題考查實數(shù)的運算,正確理解題目中的新運算是解題的關(guān)鍵.18.±3【分析】先通過估算確定M、N的值,再求M+N的平方根.【詳解】解:∵,∴,∵,∴,∵,∴,∴a的整數(shù)值為:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7解析:±3【分析】先通過估算確定M、N的值,再求M+N的平方根.【詳解】解:∵,∴,∵,∴,∵,∴,∴a的整數(shù)值為:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7,M+N=9,9的平方根是±3;故答案為:±3.【點睛】本題考查了算術(shù)平方根的估算,用“夾逼法”估算算術(shù)平方根是解題關(guān)鍵.19.①④⑤【分析】根據(jù)題意表示大于x的最小整數(shù),結(jié)合各項進行判斷即可得出答案.【詳解】解:①,根據(jù)表示大于x的最小整數(shù),故正確;②,應(yīng)該等于,故錯誤;③,當x=0.5時,,故錯誤;④,根據(jù)解析:①④⑤【分析】根據(jù)題意表示大于x的最小整數(shù),結(jié)合各項進行判斷即可得出答案.【詳解】解:①,根據(jù)表示大于x的最小整數(shù),故正確;②,應(yīng)該等于,故錯誤;③,當x=0.5時,,故錯誤;④,根據(jù)定義可知,但不會超過x+1,所以成立,故正確;⑤當x=0.8時,,故正確.故答案為:①④⑤.【點睛】本題主要考查了對題意的理解,準確的理解題意是解決本題的關(guān)鍵.20.(3,2);(-2,1)或(-2,-5).【分析】根據(jù)關(guān)聯(lián)點的定義,可得答案.【詳解】解:∵3<5,根據(jù)關(guān)聯(lián)點的定義,∴y′=5-3=2,
點(3,5)的“關(guān)聯(lián)點”的坐標(解析:(3,2);(-2,1)或(-2,-5).【分析】根據(jù)關(guān)聯(lián)點的定義,可得答案.【詳解】解:∵3<5,根據(jù)關(guān)聯(lián)點的定義,∴y′=5-3=2,點(3,5)的“關(guān)聯(lián)點”的坐標(3,2);∵點P(x,y)的關(guān)聯(lián)點Q坐標為(-2,3),∴y′=y-x=3或x-y=3,即y-(-2)=3或(-2)-y=3,解得:y=1或y=-5,∴點P的坐標為(-2,1)或(-2,-5).故答案為:(3,2);(-2,1)或(-2,-5).【點睛】本題主要考查了點的坐標,理清“關(guān)聯(lián)點”的定義是解答本題的關(guān)鍵.三、解答題21.(1)2,3(2)①②(3)【分析】(1)根據(jù)新定義的運算規(guī)則進行計算即可;(2)①根據(jù)新定義的運算規(guī)則即可求出實數(shù)的取值范圍;②根據(jù)新定義的運算規(guī)則和為整數(shù),即可求出所有非負實數(shù)的值;(3)先解方程求得,再根據(jù)方程的解是正整數(shù)解,即可求出非負實數(shù)的取值范圍.【詳解】(1)2;3;(2)①∵∴解得;②∵∴解得∵為整數(shù)∴故所有非負實數(shù)的值有;(3)∵方程的解為正整數(shù)∴或2①當時,是方程的增根,舍去②當時,.【點睛】本題考查了新定義下的運算問題,掌握新定義下的運算規(guī)則是解題的關(guān)鍵.22.(1);(2);(3).【分析】仿照閱讀材料中的方法求出所求即可.【詳解】解:(1)根據(jù)得:(2)設(shè),則,∴,∴即:(3)設(shè),則,∴,∴即:同理可求?∵【點睛】此題考查了規(guī)律型:數(shù)字的變化類,弄清題中的規(guī)律是解本題的關(guān)鍵.23.(1);(2);(3);(4)x=2017;(5)【分析】(1)類比題目中方法解答即可;(2)根據(jù)題目中所給的算式總結(jié)出規(guī)律,解答即可;(3)利用總結(jié)的規(guī)律把每個式子拆分后合并即可解答;(4)方程左邊提取x后利用(3)的方法計算后,再解方程即可;(5)類比(3)的方法,拆項計算即可.【詳解】(1)故答案為:;(2)=故答案為:;(3)計算:==1﹣=;(4)=2016=2016,x=2017;(5).=+()+()+…+().=(1﹣).=.【點睛】本題是數(shù)字規(guī)律探究題,解決問題基本思路是正確找出規(guī)律,根據(jù)所得的規(guī)律解決問題.24.(1)2;3﹣;(2)1、2、3;(3)256,4【分析】(1)依照定義進行計算即可;(2)由題可知,,則可得滿足題意的整數(shù)的的值為1、2、3;(3)由,可知,是某個整數(shù)的平方,又是符合條件的所有數(shù)中最大的數(shù),則,再依次進行計算.【詳解】解:(1)由定義可得,,,.故答案為:2;.(2),,即,整數(shù)的值為1、2、3.故答案為:1、2、3.(3),即,可設(shè),且是自然數(shù),是符合條件的所有數(shù)中的最大數(shù),,,,,,即.故答案為:256,4.【點睛】本題屬于新定義類問題,主要考查估算無理數(shù)大小,無理數(shù)的整數(shù)部分和小數(shù)部分,理解定義內(nèi)容是解題關(guān)鍵.25.初步探究:(1),-8;深入思考:(1)(?)2,()4,;(2)【分析】初步探究:(1)分別按公式進行計算即可;深入思考:(1)把除法化為乘法,第一個數(shù)不變,從第二個數(shù)開始依次變?yōu)榈箶?shù),由此分別得出結(jié)果;(2)結(jié)果前兩個數(shù)相除為1,第三個數(shù)及后面的數(shù)變?yōu)?,則;【詳解】解:初步探究:(1)2③=2÷2÷2=,;深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=1×(?)2=(?)2;5⑥=5÷5÷5÷5÷5÷5=()4;同理可得:(﹣)⑩=;(2)【點睛】本題是有理數(shù)的混合運算,也是一個新定義的理解與運用;一方面考查了有理數(shù)的乘除法及乘方運算,另一方面也考查了學(xué)生的閱讀理解能力;注意:負數(shù)的奇數(shù)次方為負數(shù),負數(shù)的偶數(shù)次方為正數(shù),同時也要注意分數(shù)的乘方要加括號,對新定義,其實就是多個數(shù)的除法運算,要注意運算順序.26.(1)-3006,990;(2)見解析;(3)P(t)的最大值是P(2262)=36.【分析】(1)根據(jù)“前介數(shù)”t與它的“中介數(shù)”的差為P(t)的定義求解即可;(2)設(shè)“前介數(shù)”為且a、b、c均不為0的整數(shù),即1a、b、c,根據(jù)定義得到P(t)=,則P(t)一定能被9整除;(3)設(shè)“前介數(shù)”為,根據(jù)題意得到能被3整除,且b只能取2,4,6,8中的其中一個數(shù);對應(yīng)的“中介數(shù)”是,得到a只能取2,4,6,8中的其中一個數(shù),計算P(t),推出要求P(t)的最大值,即要盡量的大,要盡量的小,再分類討論即可求解.【詳解】(1)解:2215是“前介數(shù)”,其對應(yīng)的“中介數(shù)”是5221,∴P(2215)=2215-5221=-3006;6655是“前介數(shù)”,其對應(yīng)的“中介數(shù)”是5665,∴P(6655)=6655-5665=990;故答案為:-3006,990;(2)證明:設(shè)“前介數(shù)”為且a、b、c均為不為0的整數(shù),即1a、b、c,∴,又對應(yīng)的“中介數(shù)”是,∴P(t)=,∵a、b、c均不為0的整數(shù),∴為整數(shù),∴P(t)一定能被9整除;(3)證明:設(shè)“前介數(shù)”為且即1a、b,a、b均為不為0的整數(shù),∴,∵能被6整除,∴能被2整除,也能被3整除,∴為偶數(shù),且能被3整除,又1,∴b只能取2,4,6,8中的其中一個數(shù),又對應(yīng)的“中介數(shù)”是,且該“中介數(shù)”能被2整除,∴為偶數(shù),又1,∴a只能取2,4,6,8中的其中一個數(shù),∴P(t)=,要求P(t)的最大值,即要盡量的大,要盡量的小,①的最大值為8,的最小值為2,但此時,且14不能被3整除,不符合題意,舍去;②的最大值為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版專業(yè)安保服務(wù)外包派遣合同
- 2024沙石礦山開采與資源整合服務(wù)合同3篇
- 二零二五年度體育賽事贊助結(jié)算合同協(xié)議2篇
- 2024年科技成果轉(zhuǎn)化與許可合同
- 2025年度戶外活動安保執(zhí)行勞務(wù)合同書2篇
- 2025年酒水質(zhì)量檢測與認證服務(wù)合同2篇
- 2024年租賃合同:辦公設(shè)備租賃與使用
- 2025版雕塑藝術(shù)品銷售代理采購合同范本2篇
- 2024年版:專業(yè)清洗服務(wù)合同模板3篇
- 2025版聚苯板建筑節(jié)能材料買賣合同質(zhì)量保證協(xié)議3篇
- 售后服務(wù)方案及運維方案
- 機加工工作計劃安排
- 2024年巴西手游市場市場前景及投資研究報告
- 2024年云南昆明市公安局直屬部門缺勤務(wù)輔警招聘筆試參考題庫附帶答案詳解
- 碼頭建設(shè)報批程序
- 商務(wù)數(shù)據(jù)分析智慧樹知到期末考試答案2024年
- 2019年10月廣東省自考00850廣告設(shè)計基礎(chǔ)試題及答案含解析
- DG-TJ08-2425-2023 道路隧道養(yǎng)護運行評價技術(shù)標準
- 膠囊內(nèi)鏡知識課件
- 智聯(lián)招聘題庫國企筆試題型
- 車聯(lián)網(wǎng)分析報告
評論
0/150
提交評論